Publications

Results 26–50 of 143

Search results

Jump to search filters

MueLu User's Guide

Berger-Vergiat, Luc B.; Glusa, Christian A.; Hu, Jonathan J.; Siefert, Christopher S.; Tuminaro, Raymond S.; Mayr, Matthias; Prokopenko, Andrey; Wiesner, Tobias

This is the official user guide for MUELU multigrid library in Trilinos version 12.13 (Dev). This guide provides an overview of MUELU, its capabilities, and instructions for new users who want to start using MUELU with a minimum of effort. Detailed information is given on how to drive MUELU through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms Finally, readers will find a comprehensive listing of available MUELU options. Any options not documented in this manual should be considered strictly experimental.

More Details

Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

Journal of Computational and Applied Mathematics

Lin, Paul L.; Shadid, John N.; Hu, Jonathan J.; Pawlowski, Roger P.; Cyr, Eric C.

This work explores the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. This study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of the original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.

More Details

Deploy threading in Nalu solver stack

Prokopenko, Andrey; Thomas, Stephen; Swirydowicz, Kasia; Ananthan, Shreyas; Hu, Jonathan J.; Williams, Alan B.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. The primary code in the ExaWind project is Nalu, which is an unstructured-grid solver for the acousticallyincompressible Navier-Stokes equations, and mass continuity is maintained through pressure projection. The model consists of the mass-continuity Poisson-type equation for pressure and a momentum equation for the velocity. For such modeling approaches, simulation times are dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge problem, the moving meshes greatly affect overall solver costs as re-initialization of matrices and re-computation of preconditioners is required at every time step In this Milestone, we examine the effect of threading on the solver stack performance against flat-MPI results obtained from previous milestones using Haswell performance data full-turbine simulations. Whereas the momentum equations are solved only with the Trilinos solvers, we investigate two algebraic-multigrid preconditioners for the continuity equations: Trilinos/Muelu and HYPRE/BoomerAMG. These two packages embody smoothed-aggregation and classical Ruge-Stiiben AMG methods, respectively. In our FY18 Q2 report, we described our efforts to improve setup and solve of the continuity equations under flat-MPI parallelism. While significant improvement was demonstrated in the solve phase, setup times remained larger than expected. Starting with the optimized settings described in the Q2 report, we explore here simulation performance where OpenMP threading is employed in the solver stack. For Trilinos, threading is acheived through the Kokkos abstraction where, whereas HYPRE/BoomerAMG employs straight OpenMP. We examined results for our mid-resolution baseline turbine simulation configuration (229M DOF). Simulations on 2048 Haswell cores explored the effect of decreasing the number of MPI ranks while increasing the number of threads. Both HYPRE and Trilinos exhibited similar overal solution times, and both showed dramatic increases in simulation time in the shift from MPI ranks to OpenMP threads. This increase is attributed to the large amount of work per MPI rank starting at the single-thread configuration. Decreasing MPI ranks, while increasing threads, may be increasing simulation time due to thread synchronization and start-up overhead contributing to the latency and serial time in the model. These result showed that an MPI+OpenMP parallel decomposition will be more effective as the amount per MPI rank computation per MPI rank decreases and the communication latency increases. This idea was demonstrated in a strong scaling study of our low-resolution baseline model (29M DOF) with the Trilinos-HYPRE configuration. While MPI-only results showed scaling improvement out to about 1536 cores, engaging threading carried scaling improvements out to 4128 cores — roughly 7000 DOF per core. This is an important result as improved strong scaling is needed for simulations to be executed over sufficiently long simulated durations (i.e., for many timesteps). In addition to threading work described above, the team examined solver-performance improvements by exploring communication-overhead in the HYPRE-GMRES implementation through a communicationoptimal- GMRE algorithm (CO-GMRES), and offloading compute-intensive solver actions to GPUs. To those ends, a HYPRE mini-app was allow us to easily test different solver approaches and HYPRE parameter settings without running the entire Nalu code. With GPU acceleration on the Summitdev supercomputer, a 20x speedup was achieved for the overall preconditioner and solver execution time for the mini-app. A study on Haswell processors showed that CO-GMRES provides benefits as one increases MPI ranks.

More Details

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solutions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Deploy threading in Nalu solver stack

Prokopenko, Andrey; Thomas, Stephen; Swirydowicz, Kasia; Ananthan, Shreyas; Hu, Jonathan J.; Williams, Alan B.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. The primary code in the ExaWind project is Nalu, which is an unstructured-grid solver for the acoustically-incompressible Navier-Stokes equations, and mass continuity is maintained through pressure projection. The model consists of the mass-continuity Poisson-type equation for pressure and a momentum equation for the velocity. For such modeling approaches, simulation times are dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge problem, the moving meshes greatly affect overall solver costs as re-initialization of matrices and re-computation of preconditioners is required at every time step.

More Details

Decrease time-to-solution through improved linear-system setup and solve (Milestone Report)

Hu, Jonathan J.; Thomas, Stephen; Dohrmann, Clark R.; Ananthan, Shreyas; Domino, Stefan P.; Williams, Alan B.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. We describe in this report our efforts to decrease the setup and solution time for the mass-continuity Poisson system with respect to the benchmark timing results reported in FY18 Q1. In particular, we investigate improving and evaluating two types of algebraic multigrid (AMG) preconditioners: Classical Ruge-Stfiben AMG (C-AMG) and smoothed-aggregation AMG (SA-AMG), which are implemented in the Hypre and Trilinos/MueLu software stacks, respectively.

More Details

Decrease time-to-solution through improved linear-system setup and solve

Hu, Jonathan J.; Thomas, Stephen; Dohrmann, Clark R.; Ananthan, Shreyas; Domino, Stefan P.; Williams, Alan B.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources.

More Details

ECP ALCC Quarterly Report (Oct-Dec 2017)

Hu, Jonathan J.

The scientific goal of ExaWind Exascale Computing Project (ECP) is to advance our fundamental understanding of the flow physics governing whole wind plant performance, including wake formation, complex terrain impacts, and turbine-turbine-interaction effects. Current methods for modeling wind plant performance fall short due to insufficient model fidelity and inadequate treatment of key phenomena, combined with a lack of computational power necessary to address the wide range of relevant length scales associated with wind plants. Thus, our ten-year exascale challenge is the predictive simulation of a wind plant composed of O(100) multi-MW wind turbines sited within a 100 km2 area with complex terrain, involving simulations with O(100) billion grid points. The project plan builds progressively from predictive petascale simulations of a single turbine, where the detailed blade geometry is resolved, meshes rotate and deform with blade motions, and atmospheric turbulence is realistically modeled, to a multi turbine array in complex terrain. The ALCC allocation will be used continually throughout the allocation period. In the first half of the allocation period, small (e.g., for testing Kokkos algorithms) and medium (e.g., 10K cores for highly resolved ABL simulations) sized jobs will be typical. In the second half of the allocation period, we will also have a number of large submittals for our resolved-turbine simulations. A challenge in the latter period is that small time step sizes will require long wall-clock times for statistically meaningful solutions. As such, we expect our allocation-hour burn rate to increase as we move through the allocation period.

More Details

Ensemble grouping strategies for embedded stochastic collocation methods applied to anisotropic diffusion problems

SIAM-ASA Journal on Uncertainty Quantification

D'Elia, Marta D.; Phipps, Eric T.; Edwards, Harold C.; Hu, Jonathan J.; Rajamanickam, Sivasankaran R.

Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162-C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this work we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen-Loève expansions. We demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.

More Details
Results 26–50 of 143
Results 26–50 of 143