Publications

Results 101–125 of 132

Search results

Jump to search filters

Peridynamic simulation of damage evolution for structural health monitoring

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Littlewood, David J.; Mish, Kyran D.; Pierson, Kendall H.

Modal-based methods for structural health monitoring require the identification of characteristic frequencies associated with a structure's primary modes of failure. A major difficulty is the extraction of damage-related frequency shifts from the large set of often benign frequency shifts observed experimentally. In this study, we apply peridynamics in combination with modal analysis for the prediction of characteristic frequency shifts throughout the damage evolution process. Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture progressive material damage. The application of modal analysis to peridynamic models enables the tracking of structural modes and characteristic frequencies over the course of a simulation. Shifts in characteristic frequencies resulting from evolving structural damage can then be isolated and utilized in the analysis of frequency responses observed experimentally. We present a methodology for quasi-static peridynamic analyses, including the solution of the eigenvalue problem for identification of structural modes. Repeated solution of the eigenvalue problem over the course of a transient simulation yields a data set from which critical shifts in modal frequencies can be isolated. The application of peridynamics to modal analysis is demonstrated on the benchmark problem of a simply-supported beam. The computed natural frequencies of an undamaged beam are found to agree well with the classical local solution. Analyses in the presence of cracks of various lengths are shown to reveal frequency shifts associated with structural damage. Copyright © 2012 by ASME.

More Details

Ductile failure X-prize

Boyce, Brad B.; Foulk, James W.; Littlewood, David J.; Mota, Alejandro M.; Ostien, Jakob O.; Silling, Stewart A.; Spencer, Benjamin S.; Wellman, Gerald W.; Bishop, Joseph E.; Brown, Arthur B.; Córdova, Theresa E.; Cox, James C.; Crenshaw, Thomas B.; Dion, Kristin D.; Emery, John M.

Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

More Details

Peridigm summary report : lessons learned in development with agile components

Parks, Michael L.; Littlewood, David J.; Salinger, Andrew G.; Mitchell, John A.

This report details efforts to deploy Agile Components for rapid development of a peridynamics code, Peridigm. The goal of Agile Components is to enable the efficient development of production-quality software by providing a well-defined, unifying interface to a powerful set of component-based software. Specifically, Agile Components facilitate interoperability among packages within the Trilinos Project, including data management, time integration, uncertainty quantification, and optimization. Development of the Peridigm code served as a testbed for Agile Components and resulted in a number of recommendations for future development. Agile Components successfully enabled rapid integration of Trilinos packages into Peridigm. A cost of this approach, however, was a set of restrictions on Peridigm's architecture which impacted the ability to track history-dependent material data, dynamically modify the model discretization, and interject user-defined routines into the time integration algorithm. These restrictions resulted in modifications to the Agile Components approach, as implemented in Peridigm, and in a set of recommendations for future Agile Components development. Specific recommendations include improved handling of material states, a more flexible flow control model, and improved documentation. A demonstration mini-application, SimpleODE, was developed at the onset of this project and is offered as a potential supplement to Agile Components documentation.

More Details
Results 101–125 of 132
Results 101–125 of 132