Recent Advancements in Peridynamics with Applications to Failure Modeling
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
A critical stage in microstructurally small fatigue crack growth in AA 7075-T651 is the nucleation of cracks originating in constituent particles into the matrix material. Previous work has focused on a geometric approach to modeling microstruc-turally small fatigue crack growth in which damage metrics derived from an elastic-viscoplastic constitutive model are used to predict the nucleation event [1, 2]. While a geometric approach based on classical finite elements was successful in explicitly modeling the polycrystalline grain structure, singularities at the crack tip necessitated the use of a nonlocal sampling approach to remove mesh size dependence. This study is an initial investigation of the peridynamic formulation of continuum mechanics as an alternative approach to modeling microstructurally small fatigue crack growth. Peridy-namics, a nonlocal extension of continuum mechanics, is based on an integral formulation that remains valid in the presence of material discontinuities. To capture accurately the material response at the grain scale, a crystal elastic-viscoplastic constitutive model is adapted for use in non-ordinary state-based peri-dynamics through the use of a regularized deformation gradient. The peridynamic approach is demonstrated on a baseline model consisting of a hard elastic inclusion in a single crystal. Coupling the elastic-viscoplastic material model with peridynamics successfully facilitates the modeling of plastic deformation and damage accumulation in the vicinity of the particle inclusion. Lattice orientation is shown to have a strong influence on material response. Copyright © 2011 by ASME.
ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
A critical stage in microstructurally small fatigue crack growth in AA 7075-T651 is the nucleation of cracks originating in constituent particles into the matrix material. Previous work has focused on a geometric approach to modeling microstruc-turally small fatigue crack growth in which damage metrics derived from an elastic-viscoplastic constitutive model are used to predict the nucleation event [1, 2]. While a geometric approach based on classical finite elements was successful in explicitly modeling the polycrystalline grain structure, singularities at the crack tip necessitated the use of a nonlocal sampling approach to remove mesh size dependence. This study is an initial investigation of the peridynamic formulation of continuum mechanics as an alternative approach to modeling microstructurally small fatigue crack growth. Peridy-namics, a nonlocal extension of continuum mechanics, is based on an integral formulation that remains valid in the presence of material discontinuities. To capture accurately the material response at the grain scale, a crystal elastic-viscoplastic constitutive model is adapted for use in non-ordinary state-based peri-dynamics through the use of a regularized deformation gradient. The peridynamic approach is demonstrated on a baseline model consisting of a hard elastic inclusion in a single crystal. Coupling the elastic-viscoplastic material model with peridynamics successfully facilitates the modeling of plastic deformation and damage accumulation in the vicinity of the particle inclusion. Lattice orientation is shown to have a strong influence on material response. Copyright © 2011 by ASME.
Modelling and Simulation in Materials Science and Engineering
Abstract not provided.
Abstract not provided.
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Peridynamics is a nonlocal extension of classical solid mechanics that allows for the modeling of bodies in which discontinuities occur spontaneously. Because the peridynamic expression for the balance of linear momentum does not contain spatial derivatives and is instead based on an integral equation, it is well suited for modeling phenomena involving spatial discontinuities such as crack formation and fracture. In this study, both peridynamics and classical finite element analysis are applied to simulate material response under dynamic blast loading conditions. A combined approach is utilized in which the portion of the simulation modeled with peridynamics interacts with the finite element portion of the model via a contact algorithm. The peridynamic portion of the analysis utilizes an elastic-plastic constitutive model with linear hardening. The peridynamic interface to the constitutive model is based on the calculation of an approximate deformation gradient, requiring the suppression of possible zero-energy modes. The classical finite element portion of the model utilizes a Johnson-Cook constitutive model. Simulation results are validated by direct comparison to expanding tube experiments. The coupled modeling approach successfully captures material response at the surface of the tube and the emerging fracture pattern. Copyright © 2010 by ASME.