Publications

15 Results

Search results

Jump to search filters

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon; Drake, Richard R.; Weirs, Gregory; Adams, Brian M.; Vigil, Dena; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua; Siefert, Christopher; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle; Desjarlais, Michael P.; Love, Edward; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.J.

Abstract not provided.

Mesoscale simulation of mixed equations of state with application to shocked platinum-doped PMP foams

Procedia Engineering

Haill, Thomas A.; Mattsson, Thomas; Root, Seth; Magyar, Rudolph J.

Hydrocarbon polymers and foams are utilized in high energy-density physics (HEDP) and inertial confinement fusion (ICF) experiments as tampers, energy conversion and radiation pulse shaping layers in dynamic hohlraum Z-pinches, and ablators in ICF capsule implosions. Shocked foams frequently are found to be mixed with other materials either by intentional doping with high-Z elements or by instabilities and turbulent mixing with surrounding materials. In this paper we present one-dimensional and three-dimensional mesoscale hydrodynamic simulations of high-Z doped poly-(4-methyl-1-pentene) (PMP or TPX) foams in order to examine the validity of various equation of state (EOS) mixing rules available in two state-of-the-art simulation codes. Platinum-doped PMP foam experiments conducted at Sandia's Z facility provide data that can be used to test EOS mixing rules. We apply Sandia's ALEGRA-MHD code and the joint LLNL/SNL KULL HEDP code to model these doped foam experiments and exercise the available EOS mixing methods. One-dimensional simulations homogenize the foam with platinum dopant and show which EOS mixing methods produce results that are consistent with measured Hugoniot states. These simulations produce sharp shock fronts that are well described by traditional Hugoniot relations. Three-dimensional mesoscale simulations explicitly model the foam structure embedded with discrete platinum particles. The heterogeneous structure of the foam results in diffuse shock fronts and an unsteady post-shock state with large fluctuations about an average state. We compare shock propagation through pure foam and Pt-doped foams (50-50 mixture by weight) at equal average initial density, and examine how well the results compare to the experimentally measured Hugoniot states. © 2013 The Authors.

More Details

Towards a predictive MHD simulation capability for designing hypervelocity magnetically-driven flyer plates and PWclass z-pinch x-ray sources on Z and ZR

Mehlhorn, Thomas A.; Yu, Edmund; Vesey, Roger A.; Cuneo, Michael E.; Jones, Brent M.; Knudson, Marcus D.; Sinars, Daniel; Robinson, Allen C.; Trucano, Timothy G.; Brunner, Thomas A.; Desjarlais, Michael P.; Garasi, Christopher J.; Haill, Thomas A.; Hanshaw, Heath L.; Lemke, Raymond W.; Oliver, Bryan V.; Peterson, K.J.

Abstract not provided.

ALEGRA-HEDP : version 4.6

Brunner, Thomas A.; Garasi, Christopher J.; Haill, Thomas A.; Mehlhorn, Thomas A.; Robinson, Allen C.; Summers, Randall M.

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamics, thermal conduction, and radiation transport effects, and two material temperature physics.

More Details

ALEGRA : version 4.6

Wong, Michael K.; Brunner, Thomas A.; Garasi, Christopher J.; Haill, Thomas A.; Mehlhorn, Thomas A.; Drake, Richard R.; Hensinger, David M.; Robbins, Joshua; Robinson, Allen C.; Summers, Randall M.; Voth, Thomas E.

ALEGRA is an arbitrary Lagrangian-Eulerian multi-material finite element code used for modeling solid dynamics problems involving large distortion and shock propagation. This document describes the basic user input language and instructions for using the software.

More Details

ALEGRA: User Input and Physics Descriptions Version 4.2

Boucheron, Edward A.; Haill, Thomas A.; Peery, James S.; Petney, Sharon; Robbins, Joshua; Robinson, Allen C.; Summers, Randall M.; Voth, Thomas E.; Wong, Michael K.; Brown, Kevin H.; Budge, Kent G.; Burns, Shawn P.; Carroll, Daniel E.; Carroll, Susan; Christon, Mark; Drake, Richard R.; Garasi, Christopher J.

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation. This document describes the user input language for the code.

More Details
15 Results
15 Results