Infovis using VTK and Qt
Abstract not provided.
Abstract not provided.
In this article we describe stress nets, a technique for exploring 2D tensor fields. Our method allows a user to examine simultaneously the tensors eigenvectors (both major and minor) as well as scalar-valued tensor invariants. By avoiding noise-advection techniques, we are able to display both principal directions of the tensor field as well as the derived scalars without cluttering the display. We present a CPU-only implementation of stress nets as well as a hybrid CPU/GPU approach and discuss the relative strengths and weaknesses of each. Stress nets have been used as part of an investigation into crack propagation. They were used to display the directions of maximum shear in a slab of material under tension as well as the magnitude of the shear forces acting on each point. Our methods allowed users to find new features in the data that were not visible on standard plots of tensor invariants. These features disagree with commonly accepted analytical crack propagation solutions and have sparked renewed investigation. Though developed for a materials mechanics problem, our method applies equally well to any 2D tensor field having unique characteristic directions.
Abstract not provided.
Abstract not provided.
Proposed for publication in the IEEE Transactions on Plasma Science.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Smart polymeric materials, such as piezoelectric polymers which deform by application of an electric field, are of interest for use in controllable mirrors as large, lightweight space optics. An important consideration when using any organic material in a space application is their extreme vulnerability to the space environment. In LEO the presence of atomic oxygen, large thermal extremes, hard vacuum, short wavelength ultraviolet and particulate radiation can result in erosion, cracking and outgassing of most polymers. While much research has been performed examining the physical and chemical changes incurred by polymers exposed to actual and simulated LEO environments, little work has focused on the effects of the space environment on the performance of piezoelectric polymers. The most widely used piezoelectric polymers are those based on poly(vinylidene fluoride) (PVDF) and include copolymers synthesized from vinylidene fluoride and trifluoroethylene, hexafluoropropylene or chlorotrifluoroethylene. The presence of a comonomer group can greatly influence on the crystalline phase, melting point, Curie point, modulus and processing required for piezoelectricity. After a rigorous pre-selection process only two polymers, namely the PVDF homopolymer and a TrFE copolymer (80% comonomer content), satisfied most of the requirements for operation in the temperature/radiation environment of LEO. Based on this initial materials selection, we have now performed a detailed study of the effects of temperature, atomic oxygen and vacuum UV radiation simulating low Earth orbit conditions on these two polymers. Both polymers exhibited diminished but very stable piezoelectric performance up to 130 C despite the upper use temperatures suggested by industry of 80 C (PVDF) and 100 C (P(VDF-TrFE)). We believe that the loss of piezoelectric response in samples conditioned at 130 C compared with non-exposed samples is partly due to the depoling process which occurs when the highly stressed films undergo contraction via relaxation. The TrFE copolymer, which does not need to be stretched for the polar phase to be present, has better retention of piezoelectric properties at 130 C compared with the highly oriented homopolymer. AO/VUV exposure caused significant surface erosion and pattern development for both polymers. Erosion yields were 2.8 x 10{sup -24} cm{sup 3}/atom for PVDF and 2.5 x 10{sup -24} cm{sup 3}/atom for P(VDF-TrFE). The piezoelectric properties of the residual material for both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly crosslinked network was formed in the copolymer, presumably due to penetrating VUV radiation, while the homopolymer remained uncrosslinked. These differences were attributed to different levels of crystallinity and increased VUV absorption by P(VDF-TrFE) over PVDF. In this paper a summary of the performance limiting effects of temperature, radiation, atomic oxygen and VUV on the piezoelectric response of PVDF based polymers will be presented.
Proposed for publication in the Journal of Geophysical Research.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Polymer Preprints.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Empirical studies suggest that consumption is more sensitive to current income than suggested under the permanent income hypothesis, which raises questions regarding expectations for future income, risk aversion, and the role of economic confidence measures. This report surveys a body of fundamental economic literature as well as burgeoning computational modeling methods to support efforts to better anticipate cascading economic responses to terrorist threats and attacks. This is a three part survey to support the incorporation of models of economic confidence into agent-based microeconomic simulations. We first review broad underlying economic principles related to this topic. We then review the economic principle of confidence and related empirical studies. Finally, we provide a brief survey of efforts and publications related to agent-based economic simulation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.