Publications

Results 83826–83850 of 96,771

Search results

Jump to search filters

Mechanisms and mitigation of single-event effects

Advances in the Astronautical Sciences

Dodd, Paul E.

Physical mechanisms responsible for single-event effects are reviewed, concentrating on silicon MOS devices and digital integrated circuits. A brief historical overview of single-event effects in space and terrestrial systems is given. Single-event upset mechanisms in SRAMs are briefly described, as is the initiation of single-event latchup in CMOS structures. Techniques for mitigating single-event effects are described, including the impact of technology trends on mitigation efficacy. Future challenges are briefly explored.

More Details

Autofocus correction of SAR images exhibiting excessive residual migration

Proceedings of SPIE - The International Society for Optical Engineering

Doerry, Armin

Relatively small motion measurement errors manifest themselves principally as a phase error in Synthetic Aperture Radar (SAR) complex data samples, and if large enough become observable as a smearing, blurring, or other degradation in the image. The phase error function can be measured and then deconvolved from the original data to compensate for the presumed motion error, ultimately resulting in a well-focused image. Techniques that do this are termed "autofocus" algorithms. A very popular autofocus algorithm is the Phase Gradient Autofocus (PGA) algorithm. The nearly universal, and typically reasonable, assumption is that the motion errors are less than the range resolution of the radar, allowing solely a phase correction to suffice. Very large relative motion measurement errors manifest themselves as an unexpected additional shifting or migration of target locations beyond any deterministic migration during the course of the synthetic aperture. Degradation in images from data exhibiting errors of this magnitude are substantial, often rendering the image completely useless. When residual range migration due to either real or apparent motion errors exceeds the range resolution, conventional autofocus algorithms fail. Excessive residual migration is increasingly encountered as resolutions become finer, less expensive inertial sensors are used, and operating ranges become longer (due to atmospheric phenomena). A new migration-correction autofocus algorithm has been developed that estimates the excessive residual migration and applies phase and frequency corrections to properly focus the image. This overcomes the conventional constraint that motion errors not exceed the SAR range resolution.

More Details

A portfolio of fine resolution Ka-band SAR images: Part II

Proceedings of SPIE - The International Society for Optical Engineering

Doerry, Armin; Dubbert, Dale F.; Thompson, M.; Gutierrez, Vivian G.

Sandia National Laboratories designs and builds Synthetic Aperture Radar (SAR) systems capable of forming high-quality exceptionally fine resolution images. During the spring of 2004 a series of test flights were completed with a Ka-band testbed SAR on Sandia's DeHavilland DHC-6 Twin Otter aircraft. A large data set was collected including real-time fine-resolution images of a variety of target scenes. This paper offers a sampling of high quality images representative of the output of Sandia's Ka-band testbed radar with resolutions as fine as 4 inches. Images will be annotated with descriptions of collection geometries and other relevant image parameters.

More Details

Possible effects of clear-air refractive-index perturbations on SAR images

Proceedings of SPIE - The International Society for Optical Engineering

Muschinski, Andreas; Dickey, Fred M.; Doerry, Armin

Airborne synthetic aperture radar (SAR) imaging systems have reached a degree of accuracy and sophistication that requires the validity of the free-space approximation for radio-wave propagation to be questioned. Based on the thin-lens approximation, a closed-form model for the focal length of a gravity wave-modulated refractive-index interface in the lower troposphere is developed. The model corroborates the suggestion that mesoscale, quasi-deterministic variations of the clear-air radio refractive-index field can cause diffraction patterns on the ground that are consistent with reflectivity artifacts occasionally seen in SAR images, particularly in those collected at long ranges, short wavelengths, and small grazing angles.

More Details

Practical measures of confidence for acoustic identification of ground vehicles

Proceedings of SPIE - The International Society for Optical Engineering

Haschke, Greg B.; Koch, Mark W.; Malone, Kevin T.

An unattended ground sensor (UGS) that attempts to perform target identification without providing some corresponding estimate of confidence level is of limited utility. In this context, a confidence level is a measure of probability that the detected vehicle is of a particular target class. Many identification methods attempt to match features of a detected vehicle to each of a set of target templates. Each template is formed empirically from features collected from vehicles known to be members of the particular target class. The nontarget class is inherent in this formulation and must be addressed in providing a confidence level. Often, it is difficult to adequately characterize the nontarget class empirically by feature collection, so assumptions must be made about the nontarget class. An analyst tasked with deciding how to use the confidence level of the classifier decision should have an accurate understanding of the meaning of the confidence level given. This paper compares several definitions of confidence level by considering the assumptions that are made in each, how these assumptions affect the meaning, and giving examples of implementing them in a practical acoustic UGS.

More Details

Beyond the heteroepitaxial quantum dot: Self-assembling complex nanostructures controlled by strain and growth kinetics

Physical Review B - Condensed Matter and Materials Physics

Gray, J.L.; Hull, R.; Lam, Chi H.; Sutter, P.; Means, J.; Floro, J.A.

Heteroepitaxial growth of GeSi alloys on Si (001) under deposition conditions that partially limit surface mobility leads to an unusual form of strain-induced surface morphological evolution. We discuss a kinetic growth regime wherein pits form in a thick metastable wetting layer and, with additional deposition, evolve to a quantum dot molecule-a symmetric assembly of four quantum dots bound by the central pit. We discuss the size selection and scaling of quantum dot molecules. We then examine the key mechanism-preferred pit formation-in detail, using ex situ atomic force microscopy, in situ scanning tunneling microscopy, and kinetic Monte Carlo simulations. A picture emerges wherein localized pits appear to arise from a damped instability. When pits are annealed, they extend into an array of highly anisotropic surface grooves via a one-dimensional growth instability. Subsequent deposition on this grooved film results in a fascinating structure where compact quantum dots and molecules, as well as highly ramified quantum wires, are all simultaneously self-assembled. © 2005 The American Physical Society.

More Details

Twin boundaries can be moved by step edges during film growth

Physical Review Letters

Ling, W.L.; Bartelt, Norman C.; McCarty, K.F.; Carter, C.B.

We track individual twin boundaries in Ag films on Ru(0001) using low-energy electron microscopy. The twin boundaries, which separate film regions whose close-packed planes are stacked differently, move readily during film growth but relatively little during annealing. The growth-driven motion of twin boundaries occurs as film steps advance across the surface-as a new atomic Ag layer reaches an fcc twin boundary, the advancing step edge carries along the boundary. This coupling of the microstructural defect (twin boundary) and the surface step during growth can produce film regions over 10μm wide that are twin free. © 2005 The American Physical Society.

More Details

Orthotropic deflection model for corner-supported plates with segmented in-plane actuators

Proceedings of SPIE - The International Society for Optical Engineering

Massad, Jordan M.; Washington, Gregory N.; Sumali, Hartono S.

The shape control of thin, flexible structures has been studied primarily for edge-supported thin plates. For applications involving reconfigurable apertures such as membrane optics and active RF surfaces, corner-supported configurations may prove more applicable. Corner-supported adaptive structures allow for parabolic geometries, greater flexibility, and larger achievable deflections when compared to edge-supported geometries under similar actuation conditions. Preliminary models have been developed for corner-supported thin plates actuated by isotropic piezoelectric actuators. However, typical piezoelectric materials are known to be orthotropic. This paper extends a previously-developed isotropic model for a corner-supported, thin, rectangular bimorph to a more general orthotropic model for a bimorph actuated by a two-dimensional array of segmented PVDF laminates. First, a model determining the deflected shape of an orthotropic laminate for a given distribution of voltages over the actuator array is derived. Second, symmetric actuation of a bimorph consisting of orthotropic material is simulated using orthogonally-oriented laminae. Finally, the results of the model are shown to agree well with layered-shell finite element simulations for simple and complex voltage distributions.

More Details

Extension of master sintering curve theory to organic decomposition

Journal of the American Ceramic Society

DiAntonio, Christopher B.; Ewsuk, Kevin G.; Bencoe, Denise N.

The ability to predict and control organic decomposition of a material under arbitrary thermal treatments is one of the main objectives of thermogravimetric studies. The development of this ability provides significant potential to ensure reliability and reproducibility for a given processing method and can be used in planning optimized thermal treatment strategies. Based on this report, the master sintering curve theory has been successfully extended to similar kinetically controlled phenomena. The theory has been applied to organic decomposition reaction kinetics to develop a master organic decomposition curve. The fundamental kinetics are assumed to be governed by an Arrhenius-type reaction rate, making master sintering and decomposition curves analogous to one another. The formulation and construction of a master decomposition curve are given in this paper. Simultaneous thermogravimetric and differential thermal analysis of a low-temperature co-fire glass/ceramic dielectric tape (Dupont 951 Green Tape™) is analyzed and used to demonstrate this new concept. The results reveal two independent organic decomposition reactions, the first occurring at ≈ 245° C and the second at ≈ 365°C. The analysis is used to produce a master decomposition curve and to calculate the activation energy for these reactions, at 86±6 and 142 ± 4 kJ/mol, respectively. In addition, the weight loss of product and the rate of decomposition can be predicted under varying thermal paths (time-temperature trajectories) following a minimal set of preliminary experiments. © 2005 The American Ceramic Society.

More Details

Test and evaluation procedures for Sandia's Teraflops Operating System (TOS) on Janus

Barnette, Daniel W.

This report describes the test and evaluation methods by which the Teraflops Operating System, or TOS, that resides on Sandia's massively-parallel computer Janus is verified for production release. Also discussed are methods used to build TOS before testing and evaluating, miscellaneous utility scripts, a sample test plan, and a proposed post-test method for quickly examining the large number of test results. The purpose of the report is threefold: (1) to provide a guide to T&E procedures, (2) to aid and guide others who will run T&E procedures on the new ASCI Red Storm machine, and (3) to document some of the history of evaluation and testing of TOS. This report is not intended to serve as an exhaustive manual for testers to conduct T&E procedures.

More Details

The method of belief scales as a means for dealing with uncertainty in tough regulatory decisions

Pilch, Martin P.

Modeling and simulation is playing an increasing role in supporting tough regulatory decisions, which are typically characterized by variabilities and uncertainties in the scenarios, input conditions, failure criteria, model parameters, and even model form. Variability exists when there is a statistically significant database that is fully relevant to the application. Uncertainty, on the other hand, is characterized by some degree of ignorance. A simple algebraic problem was used to illustrate how various risk methodologies address variability and uncertainty in a regulatory context. These traditional risk methodologies include probabilistic methods (including frequensic and Bayesian perspectives) and second-order methods where variabilities and uncertainties are treated separately. Representing uncertainties with (subjective) probability distributions and using probabilistic methods to propagate subjective distributions can lead to results that are not logically consistent with available knowledge and that may not be conservative. The Method of Belief Scales (MBS) is developed as a means to logically aggregate uncertain input information and to propagate that information through the model to a set of results that are scrutable, easily interpretable by the nonexpert, and logically consistent with the available input information. The MBS, particularly in conjunction with sensitivity analyses, has the potential to be more computationally efficient than other risk methodologies. The regulatory language must be tailored to the specific risk methodology if ambiguity and conflict are to be avoided.

More Details

Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s

Boyce, Brad B.; Crenshaw, Thomas B.

Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

More Details

Terahertz time-domain spectroscopy of atmospheric water vapor from 0.4 to 2.7 THz

Foltynowicz, Robert J.; Allman, Ronald E.

We conducted broadband absorption measurements of atmospheric water vapor in the ground state, X {sup 1}A{sub 1} (000), from 0.4 to 2.7 THz with a pressure broadening-limited resolution of 6.2 GHz using pulsed, terahertz time-domain spectroscopy (THz-TDS). We measured a total of seventy-two absorption lines and forty-nine lines were identified as H{sub 2}{sup 16}O resonances. All the H{sub 2}{sup 16}O lines identified were confirmed by comparing their center frequencies to experimental values available in the literature.

More Details
Results 83826–83850 of 96,771
Results 83826–83850 of 96,771