Phase-sensitive detection of non-covalent complexes using time modulated ligand delivery
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Conductive polymers have become an extremely useful class of materials for many optical applications. Additionally, advanced fabrication methods have led to the development of metal based micro-wiregrid polarizers utilizing submicron features. Adapting these fabrication approaches for use with polymer materials leads to optical polarizers with unique properties. The patterning of conductive polymers with the small features required for wiregrid polarizers leads to several challenges. First, the deposition of the polymer must provide a layer thick enough to provide a polarizer with a useful extinction ratio that also has high conductivity and environmental stability. Two deposition approaches have been investigated, spin coating and electrochemical growth, and results of this work will be presented. Also, the polymers considered here are not compatible with basic photoresist processes. Various tactics have been examined to overcome this difficulty including the use of hard bakes of the polymer, protective overcoats and patterned growth. The adaptations required for successfully patterning the polymer will be reviewed. Finally, fabricated devices will be shown and their optical characterization presented.
Applied Physics Letters
Capillary condensation of water can have a significant effect on rough surface adhesion. To explore this phenomenon between micromachined surfaces, the authors perform microcantilever experiments as a function of surface roughness and relative humidity (RH). Below a threshold RH, the adhesion is mainly due to van der Waals forces across extensive noncontacting areas. Above the threshold RH, the adhesion jumps due to capillary condensation and increases towards the upper limit of Γ = 144 mJ/m2. A detailed model based on the measured surface topography qualitatively agrees with the experimental data only when the topographic correlations between the upper and lower surfaces are considered. © 2007 American Institute of Physics.
Proceedings of SPIE - The International Society for Optical Engineering
X-ray imaging has been undertaken on Sandia National Laboratories' radiation effects x-ray simulators. These simulators typically yield a single very short (<20ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad (Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.5 to 1.8MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and an evaluation of the capability of the spectrometer are presented. © British Crown Copyright 2006/MOD.
Physics of Plasmas
A Dynamic Hohlraum (DH) is formed when arrays of tungsten wires driven by a high-current pulse implode and compress a cylindrical foam target. The resulting radiation is confined by the wire plasma and forms an intense, ~200–250 eV Planckian x-ray source. The internal radiation can be used for indirect drive inertial confinement fusion. The radiation emitted from the ends can be employed for radiation flow and material interaction studies. This external radiation is accompanied by an expanding blowoff plasma. In this paper, we have diagnosed this blowoff plasma using K-shell spectra of Mg tracer layers placed at the ends of some of the Dynamic Hohlraum targets. A similar diagnosis of the interior hohlraum has been carried out using Al and Mg tracers placed at 2mm depth from the ends. It is found that the blowoff plasma is about 20–25% as dense as that of the interior hohlraum, and that its presence does not significantly affect the outward flow of the nearly Planckian radiation field generated in the hohlraum interior. Finally, however, the electron temperature of the blowoff region, at ~120 eV, is only about half that of the interior hohlraum plasma.
Physics of Plasmas
This paper presents an analytic theory on the linear and nonlinear evolution of the most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array. In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction of the wires which carry current in the same direction. The analytic solution displays two regimes, where the collective interactions of all wires dominate, versus where the interaction of the neighboring, single wire dominates. This solution was corroborated by two vastly different numerical codes which were used to simulate arrays with both high wire numbers (up to 600) and low wire number (8). All solutions show that azimuthal clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, absence of azimuthal clumping of wires in comparison with the wires' radial motion may imply substantial lack of wire currents. While the present theory and simulations have ignored the plasma corona and axial variations, it is argued that their effects, and the complete account of the three-dimensional feature of the pi-mode, together with a scaling study of the wire number, may be expediently simulated by using only one single wire in an annular wedge with a reflection condition imposed on the wedge's boundary. © 2007 American Institute of Physics.
Nano Letters
Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.
Abstract not provided.
Journal of the Mechanics and Physics of Solids
A micromechanical model is developed for grain bridging in monolithic ceramics. Specifically, bridge formation of a single, non-equiaxed grain spanning adjacent grains is addressed. A cohesive zone framework enables crack initiation and propagation along grain boundaries. The evolution of the bridge is investigated through a variance in both grain angle and aspect ratio. We propose that the bridging process can be partitioned into five distinct regimes of resistance: propagate, kink, arrest, stall, and bridge. Although crack propagation and kinking are well understood, crack arrest and subsequent "stall" have been largely overlooked. Resistance during the stall regime exposes large volumes of microstructure to stresses well in excess of the grain boundary strength. Bridging can occur through continued propagation or reinitiation ahead of the stalled crack tip. The driving force required to reinitiate is substantially greater than the driving force required to kink. In addition, the critical driving force to reinitiate is sensitive to grain aspect ratio but relatively insensitive to grain angle. The marked increase in crack resistance occurs prior to bridge formation and provides an interpretation for the rapidly rising resistance curves which govern the strength of many brittle materials at realistically small flaw sizes. © 2006 Elsevier Ltd. All rights reserved.
IEEE Aerospace and Electronic Systems Magazine
To combat the security threats of the 21st century it is increasingly necessary to protect ever-remote terrain with wireless sensor surveillance. These systems must be self-sustaining to ensure they are constantly operational. Sandia developed a software simulation tool to validate a variety of renewable energy sources for commercial needs. While this software is heavily used in industry it has yet to be fully applied to wireless sensor networks. Based on simulated solar energy yields two different solar energy systems were designed, built, and deployed to the field. In the time since the solar energy power supplies were deployed, zero hours have been spent on maintenance and it was not necessary to replace a single battery. © 2007 IEEE.
This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.
The purpose of this report is to define a standard interface for storing and retrieving novel, non-traditional partial differential equation (PDE) discretizations. Although it focuses specifically on finite elements where state is associated with edges and faces of volumetric elements rather than nodes and the elements themselves (as implemented in ALEGRA), the proposed interface should be general enough to accommodate most discretizations, including hp-adaptive finite elements and even mimetic techniques that define fields over arbitrary polyhedra. This report reviews the representation of edge and face elements as implemented by ALEGRA. It then specifies a convention for storing these elements in EXODUS files by extending the EXODUS API to include edge and face blocks in addition to element blocks. Finally, it presents several techniques for rendering edge and face elements using VTK and ParaView, including the use of VTK's generic dataset interface for interpolating values interior to edges and faces.
Ceramic materials such as lead zirconium titanates (PZT), low temperature co-fired ceramics and silica glasses are used in several of Sandia's mission critical components. Brittle fracture, either during machining and processing or after many years in service, remains a serious reliability and cost issue. Despite its technological importance, brittle fracture remains poorly understand, especially the onset and propagation of sub-critical cracks. However, some insights into the onset of fracture can be gleaned from the atomic scale structure of the amorphous material. In silica for example, it is well known [1] that the Si-O-Si bonds are relatively weak and, in angle distribution functions determined from scattering experiments, the bonds exhibit a wide spread around a peak at 150. By contrast the O-Si-O bonds are strong with a narrow peak in the distribution around the 109 dictated by the SiO{sub 4} tetrahedron. In addition, slow energy release in silica, as deduced from dissolution experiments, depends on the distribution of 3-fold and higher rings in the amorphous structure. The purpose of this four month LDRD project was to investigate the atomic structure of silica in the bulk and in the vicinity of a crack tip using molecular dynamics simulations. Changes in the amorphous structure in the neighborhood of an atomically sharp tip may provide important clues as to the initiation sites and the stress intensity required to propagate a sub-critical crack.
A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).
Abstract not provided.
Proposed for publication in Anthropology News.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.