A Multi-Paradigm Modeling Framework for Energy Systems Modeling Simulation and Analysis
Industrial&Engineering Chemistry Research
Abstract not provided.
Industrial&Engineering Chemistry Research
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Why plan beyond the flu: (1) the installation may be the target of bioterrorism - National Laboratory, military base collocated in large population center; and (2) International Airport - transport of infectious agents to the area - Sandia is a global enterprise and staff visit many foreign countries. In addition to the Pandemic Plan, Sandia has developed a separate Disease Response Plan (DRP). The DRP addresses Category A, B pathogens and Severe Acute Respiratory Syndrome (SARS). The DRP contains the Cities Readiness Initiative sub-plan for disbursement of Strategic National Stockpile assets.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.
Abstract not provided.
The current packaging of most HC-3 radioactive materials at SNL/NM do not meet DOT requirements for offsite shipment. SNL/NM is transporting HC-3 quantities of radioactive materials from their storage locations in the Manzano Nuclear Facilities bunkers to facilities in TA-5 to be repackaged for offsite shipment. All transportation of HC-3 rad material by SNL/NM is onsite (performed within the confines of KAFB). Transport is performed only by the Regulated Waste/Nuclear Material Disposition Department. Part of the HC3T process is to provide the CAT with the following information at least three days prior to the move: (1) RFt-Request for transfer; (2) HC3T movement report; (3) Radiological survey; and (4) Transportation Route Map.
The Z machine is a fast pulsed-power machine at Sandia National Laboratories designed to deliver a 100-ns rise-time, 26-MA pulse of electrical current to Z-pinch experiments for research in radiation effects and inertial confinement fusion. Since 1999, Z has also been used as a current source for magnetically driven, high-pressure, high-strain-rate experiments in condensed matter. In this mode, Z produces simultaneous planar ramp-wave loading, with rise times in the range of 300-800 ns and peak longitudinal stress in the range of 4-400 GPa, of multiple macroscopic material samples. Control of the current-pulse shape enables shockless propagation of these ramp waves through samples 1-2 mm thick to measure quasi-isentropic compression response, as well as shockless acceleration of copper flyer plates to at least 28 km/s for impact experiments to measure ultra-high-pressure (-3000 GPa) shock compression response. This presentation will give background on the relevant physics, describe the experimental technique, and show recent results from both types of experiments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.