Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.
We describe the development of the first all-organic, opitcally clear, radioluminescent (RL) light. Although gas-phase RL lights have been known for many years, a number of advantages accrue to solid state devices. These include greater ruggedness and ease of brightness scale-up. In our systems, tritium is covalently bound to an organic getter, which is dissolved in an organic monomer, along with appropriate scintillating dyes. The entire system cures by monomer polymerization due to the radiation field, resulting in a clear, glowing solid plastic block. We outline here the design considerations employed in producing these materials. 12 refs., 1 fig.
This paper describes MIDAS, the Mobile Intrusion Detection and Assessment System. MIDAS is a security system that can be quickly deployed to provide wide area coverage for a mobile asset. MIDAS uses two passive infrared imaging sensors, one for intruder detection and one for assessment. Detected targets are tracked while assessment cameras are directed to view the intruder location for operator observation and assessment. The dual sensor design allows simultaneous detection, assessment, and tracking. Control and status information is provided to an operator using a color graphics terminal, touch panel driven menus, and a joystick for control of the assessment sensor pan and tilt. 1 ref., 5 figs.
The initial reactions that occur during liquefaction can have significant impacts on process yields and downstream process conditions. Reactions that result in compounds with low molecular weights and decreased boiling points are beneficial, whereas retrogressive reactions, which yield higher molecular weight compounds that are refractory to further processing, give lower yields of desired products. The objectives of this research are to determine the process conditions that give rise to retrogressive reactions during preconversion processing and to identify methods for minimizing the occurrence of these reactions. Initial studies have been performed using dibenzyl ether as a compound to model ether linkages in coal. Results show that retrogressive reactions can occur at temperatures as low as 180{degree}C. The presence of a good hydrogenation catalyst and a hydrogen donor was found to minimize retrogressive reactions, whereas the presence of mineral matter, primarily clay minerals, and ZnCl{sub 2}, enhanced the reactions. 8 refs., 3 figs.
Under the sponsorship of the United States Nuclear Regulatory Commission (NRC), Sandia National Laboratories is conducting several research programs with the common goal of developing a complete methodology for the prediction of the ultimate pressure capacity, at elevated temperatures, of light water reactor (LWR) containment systems. These programs are collectively known as the Containment Integrity Programs. This paper will provide a brief overview of these programs. As a part of the Containment Integrity Programs, a series of scale model containment test have been conducted at Sandia including a 1:8-scale steel model and a 1:6 scale reinforced concrete model. The model were pneumatically pressurized up to point of functional failure; that is, the point at which the containment was no longer effective in preventing significant leakage past its pressure boundary. Also, a 1:10-scale prestressed concrete model has been hydrostatically tested in the United Kingdom under a cooperative agreement with the NRC and others. Because the containment pressure boundary consists of numerous mechanical and electrical penetrations, several independent test programs of typical penetrations have also been performed to determine their leakage behavior when subjected to severe accident conditions. Completed containment penetration research programs include testing of typical compression seals and gaskets, inflatable seals, a personal air lock and electrical penetration assemblies (EPAs). Also, an investigation of leakage due to ovalization of penetration sleeves has been conducted as a part of the scale model test. Currently, testing of the unseating equipment hatch of the 1:6-scale containment model is under way. 23 refs., 3 figs., 2 tabs.
The CONTAIN code is a system-level analysis tool developed for the USNRC, and is intended for best-estimate prediction of conditions which might occur in the containment building of a nuclear power plant during a severe accident. A key feature of the code is that it models the containment phenomena in an integrated manner. In particular, the CONTAIN code models some of the complex ways that thermal hydraulics and aerosol phenomena interact with each other. The Light Water Reactor Aerosol Containment Experiment (LACE) progarm is a program to aid researchers in their understanding of thermal hydraulic and aerosol behavior within containments. The purpose of this paper is to report on best-estimate LA-4 post-test calculations that have been completed with the most recent version of the CONTAIN code, version 1.11. An analysis of experimental data and review of the blind post-test CONTAIN calculations is used to justify a re-calculation of the experiment and to establish a best-estimate calculation. The best-estimate calculation shows that reasonably good agreement between thermal hydraulic predictions and data can be obtained with the current CONTAIN models by varying experimental parameters within their uncertainties. Furthermore, with the recently added solubility model for hygroscopic aerosols, the best-estimate calculation gives aerosol behavior that is in good agreement with aerosol data. 10 refs., 16 figs.
Sandia National Laboratories is in the process of upgrading the Central Computing Network, which is a large heterogeneous network providing scientific computing, file storage, output services, and remote access to network resources. The migration from the present HYPERchannel-50 technology to HYPERchannel-100 is currently in progress and plans to migrate to the Fiber Distributed Data Interface (FDDI) token ring architecture are being considered. A migration from a variety of proprietary protocols to a primarily TCP/IP environment is also in progress. In order to test the feasibility of the Network Systems Corporation FDDI technology platform, two test rings have been constructed. Ring A' consists of nine dual attached Data Exchange Units (DXUs) and ring B' consists of two dual attached DXUs. The rings are linked together using N715 DXUs. Other DXU models (with associated host computers where applicable) include N130s, an N220, N400s, and FE640 IP routers. Test data on fault isolation and recovery mechanisms, performance, IP routing (within and between rings), and monitor capabilities will be presented. Interoperability' data based on tests between DXUs and Sun FDDI workstations will also be presented. 14 figs.
Experiments at Sandia National Laboratories have studied the operation of the linear-induction accelerators, HELIA and Hermes 3, in positive polarity. These experiments have provided a unique opportunity to explore the consequences of multiple-cathode electron emission in magnetically insulated transmission lines. An examination of the total energy-canonical momentum distribution of the electrons explains the features of the magnetically insulated flow exhibited by these systems. Simple analysis based on the basic concept of pressure balance, in conjunction with particle-in-cell numerical simulations, shows how the line voltage is related to the anode and cathode currents. Two flow designations are introduced that can apply to multiple-cathode magnetically insulated transmission lines: full-gap flow (FGF), and locally emitted flow (LEF). 16 refs., 15 figs.
An extensive optical fiber (o.f.) cable plant has been constructed in the Central Computing Facility (CCF) of Sandia National Labs to support the NSC DX platform with the Fiber Distributed Data Interface (FDDI) network. The cable plant was designed to optimize flexibility, maintainability, expandability, performance, and capacity. More than 2km of fiber cable and over 3400 connectors were installed. Each component of the cable system was carefully evaluated in order to meet the design requirements and conform to standards. A detailed statement of work (SOW) was generated to assure proper implementation of the design by a qualified contractor. Following the installation of the o.f. cable plant, a heterogenous, production network was built to utilize the benefits of the new media and interfaces.
The optimized C{sub 2v} geometry of ortho-carborane, 1,2-C{sub 2}B{sub 10}H{sub 12}, is determined from Hartree-Fock calculations. For this geometry, a carbon atom is substituted for a boron atom at one of the 4 inequivalent boron sites and the ground-state unrestricted Hartree-Fock eigenvalues and molecular orbitals are found. One thus obtains the valence structure of the B(1s) core-excited molecule according to the Z + 1 approximation. The eigenvalue of the highest occupied molecular orbital is then subtracted from the experimental B(1s) ionization energy of the same site in ortho-carborane. This determines the excitation energy of the most tightly bound exciton for that site. Three of the sites yield nearly identical excitation energies of 191.9 eV; the fourth site yields an excitation energy of 190.9 eV. 8 refs., 1 fig., 2 tabs.
A large area surface source of Lithium plasma for use as an ion source in the PBFA-2 ion beam diode is described. BOLVAPS produces a 1--2 mm thick layer of Li vapor with a density approaching 1 {times} 10{sup 17} cm{sup {minus}3} by rapid ohmic heating of a thin film laminate, one layer of which contains Li. The principal design issues of the vapor source being built for use on the PBFA-2 accelerator are described. LIBORS uses 670.8 nm laser light to efficiently ionize the Li vapor. The results of small-scale Physics tests and full-scale component development are summarized. 13 refs., 6 figs.
An applied B-field ion diode has been operated at 21 TW on PBFA 2 to study beam generation and transport physics. The radial focusing 15-cm-radius diode utilized a pair of magnet coils in disc cathode structures to produce an axial B-field to minimize electron loss in the 16 mm anode-cathode gaps. The diode was different than used in the past with the cathodes 20% closer together and the B-field increased to 3.3 T at the midplane. The 2.5 MA beam originated from a 5-cm-tall ion emitting region and was transported toward the axis in a 12.5-cm-radius gas cell with 2-{mu}m-thick mylar window and a 5-Torr-argon gas fill. A surface flash-over plasma created by electron loss on wax-filled grooves in the anode produced a beam with comparable currents of proton and carbon ions. The experimental results include the spatial uniformity and time dependence of proton and carbon beam emission from the anode and the divergence and focusability of both beams. 10 refs., 13 figs.
Anomalous dispersion (the decrease in refractive index which is associated with absorption) can be used to produce a phase-matched condition for second harmonic generation. This process also gives rise to large increases in the useful second order hyperpolarizability. A new, soluble NLO dye with exceptionally low absorption near 400 nm has been used for anomalous dispersion phase-matching studies in thin films.
The weldability of alloys based on Ni{sub 3}Al and Fe{sub 3}Al is discussed. Both of these ordered alloy systems may experience problems associated with welding. In the case of Ni{sub 3}Al alloys, limited hot ductility contributes to heat-affected zone cracking. Fe{sub 3}Al alloys experience similar difficulties in zone cracking. Fe{sub 3}Al alloys experience similar difficulties in welding due to excessive grain embrittlement due to the presence of water vapor. Advances in both alloying and substructural refinement to improve the weldability are reviewed. 18 refs., 10 figs.
Methods of preparing non-agglomerated powders for three systems -- yttria, titania, and yttria-stabilized zirconia -- are reviewed. The non-agglomerated nature of these powders should make it possible to sinter them into dense ceramic bodies with nanocrystalline grain sizes. Experiments with yttria-stabilized zirconia have shown that this is indeed the case, with mean linear intercept grain sizes of 60 nm resulting from original powder particle diameters of 13 nm. This ultrafine-grained zirconia is shown, in turn, to have superplastic forming rates 34 times faster than a 0.3 {mu}m-grained commercial zirconia of the same composition. 7 refs., 9 figs.
The first commercially available GaAs 8K ROM has been designed and manufactured using GigaBit Logic's 3-level metal E/D process. The worst case clock frequency of 650 MHz has been obtained with a power dissipation of 3.5 W. The ROM is organized as 1K X 8 bits, and on-chip translation logic enables the ROM to have an effective 4K X 8 resolution when used a a sine look-up table. The ECL compatible ROM is packaged in GigaBit Logic's standard 40 pin package.
Lienert, T.J.; Robino, C.V.; Hills, C.R.; Cieslak, M.J.
The weldability, solidification behavior, and solidification microstructures of Hastelloy{asterisk} Alloy B-2 and Hastelloy{asterisk} Alloy W have been investigated. Susceptibility to fusion zone hot-cracking was determined by autogenous Varestraint testing. High temperature phase transformations, including solidification events, were identified by differential thermal analysis (DTA). After testing, the microstructures of various specimens were examined by optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and analytical electron microscopy (AEM). Results of this study showed that Hastelloy B-2 has exceptional resistance to hot cracking, comparable to that of Hastelloy C-4 and 304 stainless steel, while Hastelloy W proved to be somewhat more susceptible to hot cracking, exhibiting behavior similar to Alloy 625. The solidification process in both Hastelloy B-2 and Hastelloy W was found to be dominated by the segregation of Mo which gives rise to the formation of terminal eutectic-like constituents. This pattern of segregation is consistent with that of previous work on other Ni--Mo--Cr alloys. The microstructural constituents associated with hot-cracking in each alloy have been identified. 13 refs., 8 figs.
The weldability of Haynes {reg sign} Alloy No. 242 {trademark}, a new alloy derived from the Ni-Mo-Cr system, was investigated. Susceptibility to fusion zone hot cracking was determined by Varestraint testing, and hot ductility was characterized by Gleeble testing. Solidification phase transformation data was recorded with differential thermal analysis (DTA). Weld microstructures were characterized with scanning electron microscopy (SEM), analytical electron microscopy (AEM), and electron probe microanalysis (EPMA). The results of this study indicate that this alloy has better hot cracking resistance than high strength nickel base superalloy 718; however, it has lower resistance than other alloys derived from the Ni-Cr-Mo ternary such as the Hastelloy alloys B2, C-4, C-22, C-276, and W. Segregation patterns in weld microstructures agree well with established information concerning this family of alloys. Prediction of solidification products with the Ni-Mo-Cr phase diagram based on a chemical equivalence was unsuccessful due to the higher carbon content of this alloy which favors the formation of M{sub 6}C. Solidification in Alloy 242 terminates with the formation of two eutectic-like constituents: (1) a M{sub 6}C/austenite eutectic, and (2) a second eutectic with austenite and an undetermined phase. This latter phase has a composition similar to the M{sub 6}C phase, but with a different crystal structure (cubic, ao = 6.6 {Angstrom}). 11 refs., 10 figs., 4 tabs.
In the Recirculating Linear Accelerator, we will inject a 10-kA to 20-kA electron beam, and then focus and guide it with an IFR plasma channel, which is created with a low energy electron beam. The REB will be transported through a closed racetrack or a spiral beam line to be re-accelerated by the ringing waveform of dielectric cavities. By adding more accelerating cavities along the beam line, high energies can be achieved. Experiments are in progress to study IFR beam transport issues. A new injector is needed for beam re- acceleration experiments. We are presently installing this new REB injector which will-provide a higher amplitude ({approximately}4 MV), longer duration ({approximately}40-ns FWHM), more rectangularly shaped({approximately}25-ns full width at 90% peak) waveform and a colder beam than were achievable with the previous 1.5-MV injector. The resultant constant beam energy can be more efficiently matched the guiding IFR plasma channel in the beam line and to the turning section magnetic fields. We are now developing new cavities that produce accelerating voltage pulses with improved waveform flatness, width, and amplitudes that do not suffer unacceptable degradation over the first four ringing periods. This effort requires network solver and electrostatic field stress analysis computer codes, and a scaled test model to compare actual waveforms to those predicted by the simulations. 10 refs., 9 figs.
Prior research has concentrated on damage at the Si--SiO{sub 2} interface caused by photoinjection of electrons into the oxide by near UV light. The damage processes involved may be similar to those responsible for degradation in the Stanford type, point contact solar cell (PCSC). 7 refs., 6 figs.
The electric field dependence of radiation-induced interface-trap formation has been reported to be different for metal-gate capacitors and polysilicon-gate capacitors and transistors. For metal-gate capacitors, interface-trap formation steadily increases with increasing positive field. On the other hand, for polysilicon-gate capacitors and transistors, interface-trap buildup peaks near fields of 1 MV/cm to 2 MV/cm and decreases with an approximate E{sup {minus}1/2} dependence at higher fields. The previously reported field dependence for interface-trap generation for Al-gate capacitors is consistent at all fields with McLean's physical explanation of the two-stage process, which depends on hydrogen ion (H {sup +}) release in the bulk of the oxide as radiation-induced holes transport to either interface via polaron hopping. Above 1 MV/cm, the field dependence of interface-trap buildup for polysilicon-gate devices is inconsistent with this model. Instead, it is similar to the field dependence for hole-trapping in SiO{sub 2}, suggesting that hole trapping may play a key role in interface-trap generation in Si-gate devices. However, recent studies of the time-dependence of interface-trap buildup have known that hole trapping cannot be the rate-limiting step in interface-trap buildup in polysilicon gate devices. Consistent with McLean's physical explanation of the two-stage process, the rate-limiting step in interface-trap formation appears to be H{sup +} transport to the Si/SiO{sub 2} interface. We will show that the electric field dependence of radiation-induced oxide- and interface-trap charge buildup for both polysilicon and metal-gate transistors follows an approximate E{sup {minus}1/2} field dependence over a wide range of electric fields when electron-hole recombination effects are included. Based on these results a hole trapping/hydrogen transport (HT){sup 2} model for interface-trap buildup is proposed.
Carr, M.J.; Himes, V.L.; Mighell, A.D.; Anderson, R.
The identification of unknown phases in the JCPDS-ICDD Powder Diffraction File (PDF) using diffraction data is a three-step process. First, the Search step rapidly screens the entire PDF to produce a list of candidate solutions that correspond to the unknown phase's d-spacings and chemistry. Second, the Match step examines closely every aspect of each phase in the candidate list, vs the unknown, to make the final identification. Third, the Decision step: Does the solution found make crystal-chemical-thermodynamic sense A hindrance to the identification process for electron diffraction applications is that the PDF consists of x-ray diffraction powder data. The present Elemental and Interplanar Spacing Index (EISI) book is based on the successful 1979 Max-d/Alphabetical Index rules, but with significantly enhanced capability, as it utilizes the combined NIST/Sandia/ICDD Database. The EISI is designed to be used independently as a searching tool. As a searching tool it provides a list of candidate phases for consideration as solutions to the unknown phase diffraction data. The EISI index was designed to assist the actual steps taken by an Analytical Electron Microscope (AEM) diffractionist when confronted with an unknown diffraction dataset: the assemblage and d-spacing searching of a microfile of data containing chemically correct phases. The construction of the NIST/Sandia/ICDD Database overcomes many of the disadvantages associated with searching x-ray derived databases for solutions to electron diffraction problems. 8 refs., 1 fig.
The activities involved in establishing a Computer Integrated Manufacturing (CIM) database at Sandia National Laboratories (SNL) are part of a common effort to implement a proactive data administration function across administrative and technical databases. Data administration activities include the establishment of corporate data dictionary, a corporate information model, and a library of important objects and their relationships with other objects. Processes requiring information will be identified and supported with future information systems that share administrative and technical data. The process to create databases is being established based upon accepted engineering design practices. This paper discusses the CIM database, presents the selected information modeling technique and describes the information engineering process. 9 refs.
Little work has been performed to characterize the exposure sensitivity, contrast, and tone of candidate resists for photon energies between 100--300 eV, the range in which projection soft x-ray lithography will be developed. We report here the characterization of near-edge x-ray absorption fine structure (NEXAFS) spectra, exposure sensitivity, contrast, and post-exposure processing of selected polysilane resists at photon energies close to the Si L{sub 2,3} absorption edge (100 eV). We find absorption resonance features in the NEXAFS spectra which we assign to excitation into Si--Si and Si--C {sigma}* orbitals. Using monochromatized XUV exposures on the Si--Si {sigma}* resonance at 105 eV, followed by solvent dissolution development, we have measured the exposure sensitivity curves of these resists. We find sensitivities in the range of 600--3000 mJ/cm{sup 2} and contrasts in the range from 0.5--1.4, depending on the polysilane side chain. We have also performed exposure sensitivity measurements at 92 eV, below the edge. Sensitivity decreases slightly compared to 105 eV exposures and the saturation depth and contrast both increase, as expected. We find also that exposing resist films to oxygen after XUV exposure, but before development increases the sensitivity markedly. 7 figs.
A simplified, rugged VISAR (Velocity Interferometer System for Any Reflector) system has been developed using a non-removable delay element and an essentially non-adjustable interferometer cavity. In this system, the critical interference adjustments are performed during fabrication of the cavity, freeing the user from this task. Prototype systems are easy to use and give extremely high quality results. 6 refs., 7 figs.
The High-Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures up to 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the developmental effort. This paper describes the three principal components are: the mechanical section, the electronics, and the computer software and hardware. Each of these three components are described with special attention to important design changes most pertinent to a high temperature environment. The results of two field tests of the televiewer system are also described. 7 refs., 4 figs.
Early attempts at estimation of stress wave damage in blasting by use of finite element analysis met with limited success due to numerical instabilities that prevented calculations from being carried to late times after significant fragmentation had occurred. A new damage model based on microcrack growth in tension allows finite element calculations which remain stable at late times. Estimation of crater profiles for blasting experiments in granite, using laboratory properties for all parameters, demonstrate a high level of success for this damage model. However, estimated crater profiles show systematic differences from excavated crater profiles which motivate further developments of this model. 19 refs., 16 figs.
Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section 3. The adoption by ASME facilitates a materials qualification for structural use in transport cask applications. The borated stainless steel being tested conforms to ASTM specification A-887, which specifies 16 grades of material as a function of boron content (0.20% to 2.25%) and fabrication technique. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in SA-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thickness using borated stainless steel would be comparable to or thinner than an equivalent basket manufactured from a typical stainless steel without boron additions. 3 figs., 5 tabs.
The use of a negative coefficient of thermal expansion (CTE) mineral filler ({beta}-eucryptite) is examined as a means of reducing CTE of a bismaleimide polymer (Kerimid 601). Results show that {beta}-eucryptite is effective in lowering CTE of the polymer and of glass fabric composites with a filled matrix phase. A theoretical model is presented that effectively predicts CTE of the filled BMI but underestimates the observed results by approximately 15%. The lower predicted CTE is believed to be due to poor interfacial adhesion at the {beta}-eucryptite/bismaleimide interface. Poor interfacial adhesion is supported by ultimate tensile strength results. 27 refs., 7 figs., 3 tabs.
Diffusion-limited (heterogeneous) oxidation effects are often important for studies of polymer degradation. Such effects are common in polymers subjected to ionizing radiation at relatively high dose rate. To better understand the underlying oxidation processes and to aid in the planning of accelerated aging studies, it would be desirable to be able to monitor and quantitatively understand these effects. In this paper, we briefly review a theoretical diffusion approach which derives model profiles for oxygen surrounded sheets of material by combining oxygen permeation rates with kinetically based oxygen consumption expressions. The theory leads to a simple governing expression involving the oxygen consumption and permeation rates together with two model parameters {alpha} and {beta}. To test the theory, gamma-initiated oxidation of a sheet of commercially formulated EPDM rubber was performed under conditions which led to diffusion-limited oxidation. Profile shapes from the theoretical treatments are shown to accurately fit experimentally derived oxidation profiles. In addition, direct measurements on the same EPDM material of the oxygen consumption and permeation rates, together with values of {alpha} and {beta} derived from the fitting procedure, allow us to quantitatively confirm for the first time the governing theoretical relationship. 17 refs., 3 figs.
This paper will focus on the electronic and photochemical properties of polysilylenes, with particular emphasis on the many resemblances in the electronic properties of polysilylenes to those of the familiar {pi}-conjugated polymers. In this context, the term {sigma}-conjugation'' will appear in this paper, as it is almost universally prevalent in the field. However, the use of this term should only be interpreted to suggest a correspondence in the electronic properties with those of {pi}-conjugated materials. No direct correspondence in electronic interactions at the atomic level is implied. In fact, the theoretical underpinnings of the mechanism of electron delocalization in {sigma}-bonded systems remain incomplete, at best. The systematic name polysilylene'' will be used in place of the equivalent and widely used term polysilane.'' In this context, these terms are intended to refer to polydiorganosilylenes, i.e. silicon backbones having substituents other than hydrogen. Moreover, since, with the exception of the commercial use of the intractable polydimethylsilylene as a precursor to {beta}-Sic fibers, the overwhelming majority of the interest in the field is in soluble polysilylenes, the discussion here will be of that greatly predominant group of the materials which are fully tractable and processible. 75 refs., 4 figs., 2 tabs.
We have demonstrated that CI{sub 2} RIBE is a useful dry-etch technology for InSb and InAsSb/InSb Strained-Layer Superlattices (SLSs) in spite of the low vapor pressure of the In chlorides. Etching of these materials using both Cl{sub 2} Reactive-Ion-Beam Etching (RIBE) and Ar IBE resulted in extremely smooth surfaces and well controlled etch rates with CI{sub 2} RIBE accelerating the etch rate by approximately a factor of two compared to Ar IBE over the range of beam energies studied. Sloped sidewalls resulted at all tested Cl{sub 2} RIBE energies and are probably caused by sidewall passivation with In chlorides. The anisotropy and reduced etch-induced damage of Cl{sub 2} RIBE is expected to become of critical importance in the fabrication of dense arrays of long-wavelength photodetectors. 2 figs.
A sol-gel method was use to prepare bulk, closed pore, amorphous alumina-silica. Films prepared from this 47wt% Al{sub 2}O{sub 3}- SiO{sub 2} composition were examined by SAW, elipsometry and electrical measurements. The films were found to have a surface area of 1.1 cm{sup 2}/cm{sup 2}, a refractive index of 1.44 at 633 nm, and a relative permittivity of 6.2 at 200 KHz. These properties indicate potential applications as hermetic seals, barrier coatings, dielectric layers for capacitors and passivation coatings for electronic circuits.
We report on the rapid thermal processing (RTP) of Y-123 fibers with and without presintering to form the orthorhombic phase. We show that fibers which were originally semiconducting and tetragonal before rapid thermal processing form normal twinned orthorhombic material after processing for 2--4 seconds at > 1000{degrees}C with a 3 min. cool down in oxygen. They subsequently show {Tc} to 90K and magnetization indicative of substantial diamagnetic shielding. We present the effects of varying the RTP parameters on the morphology, phase, and superconducting properties of a number of tetragonal and orthorhombic Y-123 fibers. 2 refs., 5 figs., 1 tab.
There has long been a need for fast read nonvolatile, rad hard memories for military and space applications. Recent advances in EEPROM technology now allow this need to be met for many applications. Harris/Sandia have developed a 16k and a 256k rad hard EEPROM. The EEPROMs utilize a Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) memory transistor integrated into a 2 {mu}m, rad hard two level metal CMOS process. Both the 16k and the 256k parts have been designed to interface with the Intel 8085 or 80C51 and National 32000 series microprocessors and feature page and block clear modes. Both parts are functionally identical, and are produced by the same fabrication process. They are also pin for pin compatible with each other, except for the extra address and ground pins on the 256k. This paper describes the characteristics of this EEPROM family. 1 ref.
The concentrations of carbon dioxide, methane, sulfur dioxide, nitrous oxides and chlorofluorocarbons is increasing in the earth's atmosphere. Increased concentrations of these trace gases could lead to global warming, increased acid rain and increased UV radiation on the earth's surface; however, the actual impacts are still uncertain and are also the subject of great debate. Application of clean'' energy sources such as geothermal are obviously desirable for decreasing these effects and improving our overall general environment. This paper briefly summarizes the global environment concerns, providing a backdrop for the following papers which describe the geothermal role in future environmental considerations. 5 refs., 2 figs., 1 tab.
Many of the applications that require the unique capabilities of Photoconductive Semiconductor Switches (PCSS) demand a compact package. We have been able to demonstrate that GaAs switches operated in the high gain mode called lock-on'' meet the required electrical switching parameters of several such applications using small switch sizes. The only light source that has enough power to trigger a PCSS and is compatible with a small package is a laser diode. This paper will describe the progress that leads to the triggering of high power PCSS switches with laser diodes. Our goal is to switch up to 5 kA in a single shot mode and up to 100 MW repetitively at up to 10 kHz. These goals are feasible since the switches can be used in parallel or in series. Low light level triggering became possible after the discovery of a high electric field, high gain switching mode in GaAs (and later in InP). At electric fields below 3 kV/cm GaAs switches are activated by creation of, at most, only one conduction electron- valence hole pair per photon absorbed in the sample. This linear mode demands high laser power and, after the light is extinguished, the carriers live for only a few nanoseconds. At higher electric fields GaAs behaves as a light activated Zener diode. The laser light generates carriers as in the linear mode and the field induces gain such that the amount of light required to trigger the switch is reduced by a factor of up to 500. The gain continues until the field across the sample drops to a material dependent lock-on field. At this point the switch will carry as much current as, and for as long as, the circuit can maintain the lock-on field. The gain in the switch allows for the use of laser diodes. 8 refs., 11 figs.
Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensate properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.
A method is presented for determining the force spectral density function for a vibration test where a combination of force and acceleration is used for control. First the acceleration spectral density is established based on an envelope of the interface motion between the test item and the mounting structure (the base) in the use (field) environment. The driving point accelerance (acceleration/force) of the test item is measured at the mounting interface. The force required to drive the test item in an acceleration controlled test is then estimated. A force spectral density is then established using the estimated motion controlled force, and a derived force reduction factor. An extremal control vibration test is then performed based on which parameter (input force or input acceleration) reaches based on which parameter (input force or input acceleration) reaches its envelope first. 7 refs., 7 figs., 2 tabs.
This paper presents the results of an experimental study of the thermal stability in air and vacuum of the codeposited carbon/hydrogen layer formed in a carbon-lined fusion reactor. Results are also presented for the stability of the saturated layer formed by the implantation of energetic hydrogen ions into a graphite surface. For both films, the hydrogen isotope release occurs at a much lower temperature in air than it does in a vacuum. At temperatures above 600 K, the hydrogen isotope release in air is very rapid and is emitted in a condensible form. It is speculated that isotopic exchange with the water present in air is responsible for this release. In vacuum, temperatures in excess of 1000 K are required to produce a rapid release from either film. The implications of these results to the safety of tritium in carbon-lined fusion reactors are discussed. 24 refs., 2 figs.
Laboratory deformation and permeability measurements have been made on chalk samples from Ekofisk area fields as a function of confining stress and pore pressure to determine the effective stress laws for chalk. An understanding of the effective stress law is essential to obtain correct reservoir-property data from core analysis and is critical for reservoir management studies and reservoir compaction models. A powerful statistical technique known as the response surface method has been used to analyze our laboratory data determine the form of the effective stress law for deformation and permeability. Experiments were conducted on chalk samples that had a range of porosities from 15% to 36%, because porosity is the dominant intrinsic property that effects deformation and permeability behavior of chalk. Deformation of a 36% porosity chalk was highly nonlinear, but the effective stress law was linear, with {alpha} equal to about unity. Lower-porosity samples showed linear strain behavior and a linear effective stress law with {alpha} as low as 0.74. Analysis of the effective stress law for permeability is presented only for the lowest porosity chalk sample because changes in permeability in the higher-porosity chalk samples due to increasing confining stress or pore pressure were not were large enough, to deduce meaningful effective stress relationships. 15 refs., 8 figs., 2 tabs.
In actual circuit application, MOS transistor bias is generally not constant through radiation exposure. Nevertheless, the overwhelming majority of radiation effects studies and hardness assurance testing is performed at constant bias for simplicity and practicality. In the past 15 years, however, it has been shown that oxide- and interface-trap charge buildup and annealing during switched-bias exposures can differ quantitatively and qualitatively from that observed during steady-state exposures. This has made it difficult to develop predictive models of MOS circuit response for actual use conditions, and has introduced uncertainty into hardness assurance testing of MOS circuits. In this summary, defect growth and annealing rates are compared for steady-state and switched-biased irradiations of MOS transistors. A simple method is described to predict MOS oxide-trap charge, interface-trap charge, and mobility degradation during switched-bias exposures from steady-state ( on'' and off'') irradiations. Over a wide range of switching conditions for the devices examined, this method has provided predictions typically accurate to within better than 20%. The maximum error observed to data is less than 40%. This method should allow the total-dose radiation response of MOS circuits in real-use scenarios to be modeled with improved accuracy and flexibility. 9 refs., 3 figs.
Drillhole H-16 is an exploratory test hole, 850.9 ft deep, drilled in eastern Eddy County, New Mexico, to study the hydrologic parameters of possible aquifers and how these aquifers could affect the construction and maintenance of a shaft to be located about 54 ft from the drillhole. This shaft will connect the underground working of the WIPP (Waste Isolation Pilot Plant) site to the surface. Oeophysical logs were taken to measure acoustic velocities, density, radioactivity, porosity, and formation resistivities. This report describes the data collected during the drilling of exploration drillhole H-16. 2 refs., 2 figs., 3 tabs.
Recent legislation mandated the improvement of national competitiveness as a mission of the defense programs of the US Department of Energy. As a consequence, technology transfer --- the process of transferring commercially valuable technologies developed under government sponsorship to industry for commercialization --- is becoming an important emphasis at many DOE laboratories. Technology transfer processes take many forms, and there are different perspectives on how to approach this activity. In this paper, a taxonomy of technology transfer processes at a national laboratory is presented. In addition, the focus and rationale of Sandia National Laboratories' unique new initiative called the Technology Maturation Program is discussed. This program is designed to complete one essential element of technology transfer that advanced technologies toward commercial applications to the point that industry is willing to assume the investment risk. Strategies and program plans designed to improve the effectiveness of Sandia's contribution to enhancing US industry's competitive position in world markets are also presented.
ENDF/B-VI cross sections were released to the testing community in January 1990. Work at Sandia National Laboratories, with pre-released versions of the new cross sections indicates that changes in the neutron-induced charged-particle reactions will significantly affect 14-MeV neutron dosimetry. Reactions that are important for fission reactor dosimetry were examined and most did not change significantly. 12 refs., 3 figs., 3 tabs.
We have systematically varied processing parameters to fabricate PZT 53/47 thin films. Polycrystalline PZT thin films were fabricated by spin depositing Pt coated SiO{sub 2}/Si substrates with alkoxide solutions. Our study focused on two process parameters: (1) heating rate and (2) excess Pb additions. We used rapid thermal processing techniques to vary heating rates from 3{degree}C/min to 8400{degree}C/min. Films were characterized with the following excess Pb additions: 0, 3, 5, and 10 mol %. For all process variations, films with greater perovskite content had better ferroelectric properties. Our best films were fabricated using the following process parameters: an excess Pb addition of 5 mol %, a heating rate of 8400{degree}C/min and annealing conditions of 700{degree}C for 1 min. Films fabricated using these process conditions had a remanent polarization of 0.27 C/m{sup 2} and a coercive field of 3.4 MV/m. 12 refs., 4 figs.
Lost circulation is the phenomenon where circulating drilling fluid is lost to fractures or pores in the rock formation rather than returning to the surface through the wellbore annulus. In geothermal drilling, lost circulation can be a serious problem that contributes greatly to the cost of the average geothermal well. A DOE-sponsored program is underway at Sandia National Laboratories to develop new technology for solving lost circulation problems. The Lost Circulation Technology Development Program currently consists of twelve projects in three areas: technology to plug porous and minor-fracture loss zones; technology to plug major-fracture loss zones; and technology to characterize loss zones. This paper describes the program and highlights recent progress. 12 refs., 10 figs.