Publications

Results 94301–94350 of 99,299

Search results

Jump to search filters

Subsurface steam sampling in Geysers wells

Normann, Randy A.

A new downhole sampling tool has been built for use in steam wells at The Geysers geothermal reservoir. The tool condenses specimens into an initially evacuated vessel that is opened down hole at the direction of an on-board computer. The tool makes a temperature log of the well as it is deployed, and the pressure and temperature of collected specimens are monitored for diagnostic purposes. Initial tests were encouraging, and the Department of Energy has funded an expanded effort that includes data gathering needed to develop a three-dimensional model of The Geysers geochemical environment. Collected data will be useful for understanding the origins of hydrogen chloride and non-condensable gases in the steam, as well as tracking the effect of injection on the composition of produced steam. Interested parties are invited to observe the work and to join the program.

More Details

Statistical analysis of modal parameters using the bootstrap

Paez, Thomas L.

Structural dynamic testing is concerned with the estimation of system properties, including frequency response functions and modal characteristics. These properties are derived from tests on the structure of interest, during which excitations and responses are measured and Fourier techniques are used to reduce the data. The inputs used in a test are frequently random, and they excite random responses in the structure of interest When these random inputs and responses are analyzed they yield estimates of system properties that are random variable and random process realizations. Of course, such estimates of system properties vary randomly from one test to another, but even when deterministic inputs are used to excite a structure, the estimated properties vary from test to test. When test excitations and responses are normally distributed, classical techniques permit us to statistically analyze inputs, responses, and some system parameters. However, when the input excitations are non-normal, the system is nonlinear, and/or the property of interest is anything but the simplest, the classical analyses break down. The bootstrap is a technique for the statistical analysis of data that are not necessarily normally distributed. It can be used to statistically analyze any measure of input excitation or response, or any system property, when data are available to make an estimate. It is designed to estimate the standard error, bias, and confidence intervals of parameter estimates. This paper shows how the bootstrap can be applied to the statistical analysis of modal parameters.

More Details

Computing the apparent centroid of radar targets

Lee, Cullen E.

A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based on a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.

More Details

Nondestructive evaluation (NDE) of composite-to-metal bond interface of a wind turbine blade using an acousto-ultrasonic technique

Gieske, John H.

An acousto-ultrasonic inspection technique was developed to evaluate the structural integrity of the epoxy bond interface between a metal insert and the fiber glass epoxy composite of a wind turbine blade. Data was generated manually as well as with a PC based data acquisition and display system. C-scan imaging using a portable ultrasonic scanning system provided an area mapping of the delamination or disbond due to fatigue testing and normal field operation conditions of the turbine blade. Comparison of the inspection data with a destructive visual examination of the bond interface to determine the extent of the disbond showed good agreement between the acousto-ultrasonic inspection data and the visual data.

More Details

Free form fabrication using the laser engineered net shaping (LENS{trademark}) process

Keicher, David

Sandia National Laboratories is developing a technology called Laser Engineered Net Shaping{trademark} (LENS{trademark}). This process allows complex 3-dimensional solid metallic objects to be directly fabricated for a CAD solid model. Experiments performed demonstrate that complex alloys such as Inconel{trademark} 625 and ANSI stainless steel alloy 316 can be used in the LENS{trademark} process to produce solid metallic-shapes. In fact, the fabricated structures exhibit grain growth across the deposition layer boundaries. Mechanical testing data of deposited 316 stainless steel material indicates that the deposited material strength and elongation are greater than that reported for annealed 316 stainless steel. Electron microprobe analysis of the deposited Inconel{trademark} 625 material shows no compositional degradation of the 625 alloy and that 100% dense structures can be obtained using this technique. High speed imaging used to acquire process data during experimentation shows that the powder particle size range can significantly affect the stability, and subsequently, the performance of the powder deposition process. Finally, dimensional studies suggest that dimensional accuracy to {+-} 0.002 inches (in the horizontal direction) can be maintained.

More Details

On the computational complexity of sequence design problems

Hart, William E.

Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparent difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. The authors evaluate the practical relevance of two sequence design problems by analyzing their computation complexity. They show that the canonical method of sequence design is intractable, and describe approximation algorithms for this problem. The authors also describe an efficient algorithm that exactly solves the grand canonical method. The analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need to analyze these problems to evaluate their practical relevance.

More Details

The effect of stress on the nanomechanical properties of Au surfaces

Houston, Jack E.

Stress in thin films plays a critical role in many technologically important areas. The role is a beneficial one in strained layer superlattices where semiconductor electrical and optical properties can be tailored with film stress. On the negative side, residual stress in thin-film interconnects in microelectronics can lead to cracking and delamination. In spite of their importance, however, surface and thin-film stresses are difficult to measure and control, especially on a local level. In recent studies, we used the Interfacial Force Microscope (IFM) in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In recent measurements on two of the original substrate materials we found a direct correlation between the nanomechanical values and the residual stress in the films, as measured globally by a wafer warping technique. In the present paper, we review these earlier results and show recent measurements dealing with stresses externally applied to the films which supports our earlier conclusion concerning the role of stress on our measurements. In addition, we present very recent results concerning morphological effects on nanomechanical properties which add additional support to the suggestion that near-threshold indentation holds promise of being able to measure stress on a very local level.

More Details

Direct observation of mobile protons in SiO{sub 2} thin films: Potential application in a novel memory device

Warren, William L.

In this work we show that annealing of silicon/silicon-dioxide/silicon structures in forming gas (N{sub 2}:H{sub 2}; 95:5) above 500{degrees}C leads to spontaneous incorporation of mobile H{sup +} ions in the buried SiO{sub 2} layer. We demonstrate that, unlike the alkali ions feared as killer contaminants in the early days, the space charge distribution of these mobile protons within the buried oxide layer can be very well controlled and easily rearranged with relatively high speed at room temperature. The hysteresis in the flat band voltage shift provides a unique vehicle to study proton kinetics in silicon dioxide thin films. It is further shown how this effect can be used as the basis for a reliable nonvolatile FET memory device that has potential to be competitive with state-of-the-art Si-based memory technologies. The power of this novel device is its simplicity; it requires few processing steps, all of which are standard in Si integrated-circuit fabrication.

More Details

Interfacial arsenic from wet oxidation of Al{sub x}Ga{sub 1-X}As/GaAs: Its effects on electronic properties and new approaches to MIS device fabrication

Ashby, C.I.H.; Sullivan, J.P.; Newcomer, P.P.

Three important oxidation regimes have been identified in the temporal evolution of the wet thermal oxidation of Al{sub x}Ga{sub 1-x}As (1 {ge} x {ge} 0.90) on GaAs: (1) oxidation of Al and Ga in the Al{sub x}Ga{sub 1-x}As alloy to form an amorphous oxide layer, (2) oxidative formation and elimination of elemental As (both crystalline and amorphous) and of amorphous As{sub 2}O{sub 3}, and (3) crystallization of the oxide film. Residual As can result in up to a 100-fold increase in leakage current and a 30% increase in the dielectric constant and produce strong Fermi-level pinning and high leakage currents at the oxidized Al{sub x}Ga{sub 1-x}As/GaAs interface. The presence of thermodynamically-favored interfacial As may impose a fundamental limitation on the application of AlGaAs wet oxidation for achieving MIS devices in the GaAs material system.

More Details

A quantum mechanical investigation of positively charged defects in SiO{sub 2} thin film devices

Warren, William L.

Ab initio Hartree-Fock and second-order Moeller-Plesset theory calculations have been performed to investigate the stability of triply-coordinated O{sup +} centers in the Si-O-Si network of amorphous SiO{sub 2}. The calculations reveal that the H{sup +} ion binds with a bridging O center to form a very stable (D{sub e} > 6 eV) trivalent O complex. Capture of an electron by the positively charged protonated complex, however, is predicted to immediately lead to the dissociation of the O-H bond. A relatively weaker, but stable bond is also formed between the bridging O atom and a {sup +}SiH{sub 3} ion.

More Details

Factors affecting use of fission foils as dosimetry sensors

Griffin, Patrick J.

Fission foils are commonly used as dosimetry sensors. They play a very important role in neutron spectrum determinations. This paper provides a combination of experimental measurements and calculations to quantify the importance and synergy of several factors that affect the fission response of a dosimeter. Only when these effects are properly treated can fission dosimeters be used with sufficient fidelity.

More Details

Rationale for the H-19 and H-11 tracer tests at the WIPP site

Meigs, Lucy C.

The Waste Isolation Pilot Plant (WIPP) is a repository for transuranic wastes constructed in bedded Permian-age halite in the Delaware Basin, a sedimentary basin in southeastern New Mexico, USA. A drilling scenario has been identified during performance assessment (PA) that could lead to the release of radionuclides to the Culebra Dolomite Member of the Rustler Formation, the most transmissive water-saturated unit above the repository horizon. Were this to occur, the radionuclides would need to be largely contained within the Culebra (or neighboring strata) within the WIPP-site boundary through the period lasting for 10,000 years after repository closure for WIPP to remain in compliance with applicable regulations on allowable releases. Thus, processes affecting transport of radionuclides within the Culebra are of importance to PA.

More Details

Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

Preece, Dale S.

A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

More Details

Vertical-axis wind turbines -- The current status of an old technology

Berg, Dale E.

Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

More Details

Structural dynamics modeling and testing of the Department of Energy tractor/trailer combination

Field Jr., R.V.; Hurtado, J.E.; Carne, T.G.; Dohrmann, C.R.

This study presents a combined analytical and experimental effort to characterize and improve the ride quality of the Department of Energy tractor/trailer combination. The focus is to augment the experimental test results with the use of a high quality computer model. The discussion includes an overview of the finite element model of the vehicle and experimental modal test results. System identification techniques are employed to update the mathematical model. The validated model is then used to illustrate the benefits of incorporating two major design changes, namely the switch from a separate cab/sleeper configuration to an integrated cab, and the use of a cab suspension system.

More Details

Security systems engineering overview

Steele, Basil J.

Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at $70 billion in direct costs and up to $300 billion in indirect costs. Health insurance fraud alone is estimated to cost American businesses $100 billion. Theft, warranty fraud, and counterfeiting of computer hardware totaled $3 billion in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies (counterfeit currency, cellular phone billing, credit card fraud, health care fraud, passport, green cards, and questionable documents); industrial espionage detection and prevention (intellectual property, computer chips, etc.); and security barrier technology (creation of delay such as gates, vaults, etc.).

More Details

Technologies for security, military police and professional policing organizations, the Department of Energy perspective

Steele, Basil J.

There are many technologies emerging from this decade that can be used to help the law enforcement community protect the public as well as public and private facilities against ever increasing threats to this country and its resources. These technologies include sensors, closed circuit television (CCTV), access control, contraband detection, communications, control and display, barriers, and various component and system modeling techniques. This paper will introduce some of the various technologies that have been examined for the Department of Energy that could be applied to various law enforcement applications. They include: (1) scannerless laser radar; (2) next generation security systems; (3) response force video information helmet system; (4) access delay technologies; (5) rapidly deployable intrusion detection systems; and (6) cost risk benefit analysis.

More Details

Characteristics of self-sensing actuation for active control

Barney, Patrick S.

The benefits of a collocated sensor actuator pair are well known within the controls community. Generally speaking, collocation offers the use of simple control algorithms with reduced instabilities due to spillover. One method for achieving collocation is the implementation of a ``sentuator`` in which a piezoelectric element functions simultaneously as both a sensor and an actuator. Past work in utilizing a sentuator has primarily been limited to piezoelectric films and patches mounted to flexible structures. Additional papers have provided information and methodology for dealing with the non-linear aspects of a piezoceramic sentuator. The need arises for methods of self-sensing when performing active vibration control of very stiff structures. A method for understanding and using self-sensing lead zirconate titanate stacks for active vibration control is presented. This paper specifically provides a basic understanding of self-sensing methods as applied to stiff structures for the purposes of control. The discussion of the methodology is followed by a simple example in which active vibration control is applied to a model of a boring bar with embedded PZT stacks.

More Details

Statistical validation of stochastic models

Paez, Thomas L.

It is common practice in structural dynamics to develop mathematical models for system behavior, and the authors are now capable of developing stochastic models, i.e., models whose parameters are random variables. Such models have random characteristics that are meant to simulate the randomness in characteristics of experimentally observed systems. This paper suggests a formal statistical procedure for the validation of mathematical models of stochastic systems when data taken during operation of the stochastic system are available. The statistical characteristics of the experimental system are obtained using the bootstrap, a technique for the statistical analysis of non-Gaussian data. The authors propose a procedure to determine whether or not a mathematical model is an acceptable model of a stochastic system with regard to user-specified measures of system behavior. A numerical example is presented to demonstrate the application of the technique.

More Details

Ion implantation and annealing studies in III-V nitrides

Zolper, J.C.

Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n{sup +}-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10{sup 16} cm{sup {minus}2} 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material.

More Details

Planarization techniques for MEMS: enabling new structures and enhancing manufacturability

Smith, J.H.

Planarization techniques such as chemical-mechanical polishing (CMP) have emerged as enabling technologies for the manufacturing of multi- level metal interconnects used in high-density Integrated Circuits (IC). An overview of general planarization techniques for MicroElectroMechanical Systems (MEMS) and, in particular, the extension of CMP from sub-micron IC manufacturing to the fabrication of complex surface-micromachined MEMS will be presented. Planarization technique alleviates processing problems associated with fabrication of multi-level polysilicon structures, eliminates design constraints linked with non-planar topography, and provides an avenue for integrating different process technologies. The CMP process and present examples of the use of CMP in fabricating MEMS devices such as microengines, pressure sensors, and proof masses for accelerometers along with its use for monolithically integrating MEMS devices with microelectronics are presented.

More Details

Applications of virtual reality to nuclear safeguards and non-proliferation

Stansfield, S.

This paper presents several applications of virtual reality relevant to the areas of nuclear safeguards and non-proliferation. Each of these applications was developed to the prototype stage at Sandia National Laboratories` Virtual Reality and Intelligent Simulation laboratory. These applications include the use of virtual reality for facility visualization, training of inspection personnel, and security and monitoring of nuclear facilities.

More Details

Use of artificial neural networks for analysis of complex physical systems

Paez, Thomas L.

Mathematical models of physical systems are used, among other purposes, to improve our understanding of the behavior of physical systems, predict physical system response, and control the responses of systems. Phenomenological models are frequently used to simulate system behavior, but an alternative is available - the artificial neural network (ANN). The ANN is an inductive, or data-based model for the simulation of input/output mappings. The ANN can be used in numerous frameworks to simulate physical system behavior. ANNs require training data to learn patterns of input/output behavior, and once trained, they can be used to simulate system behavior within the space where they were trained.They do this by interpolating specified inputs among the training inputs to yield outputs that are interpolations of =Ming outputs. The reason for using ANNs for the simulation of system response is that they provide accurate approximations of system behavior and are typically much more efficient than phenomenological models. This efficiency is very important in situations where multiple response computations are required, as in, for example, Monte Carlo analysis of probabilistic system response. This paper describes two frameworks in which we have used ANNs to good advantage in the approximate simulation of the behavior of physical system response. These frameworks are the non-recurrent and recurrent frameworks. It is assumed in these applications that physical experiments have been performed to obtain data characterizing the behavior of a system, or that an accurate finite element model has been run to establish system response. The paper provides brief discussions on the operation of ANNs, the operation of two different types of mechanical systems, and approaches to the solution of some special problems that occur in connection with ANN simulation of physical system response. Numerical examples are presented to demonstrate system simulation with ANNs.

More Details

A virtual universe utilizing haptic display

Anderson, T.

This paper summarizes a virtual reality universe application in which a user can travel between four virtual worlds through the use of haptic buttons. Each of the worlds demonstrates different aspects of haptic rendering which together create a wide base for force feedback effects. Specifics of the rendering algorithms will be discussed along with possible uses and modifications for other real-life applications.

More Details

The crystalline-silicon photovoltaic R&D project at NREL and SNL

Gee, James M.

This paper summarizes the U.S. Department of Energy R&D program in crystalline-silicon photovoltaic technology, which is jointly managed by Sandia National Laboratories and National Renewable Energy Laboratory. This program features a balance of basic an d applied R&D, and of university, industry, and national laboratory R&D. The goal of the crystalline-silicon R&D program is to accelerate the commercial growth of crystalline-silicon photovoltaic technology, and four strategic objectives were identified to address this program goal. Technical progress towards meeting these objectives is reviewed.

More Details

Using the Remote Access Protocol for usability evaluation in X Windows

Edwards, T.

The automatic evaluation of graphical user interfaces can help reduce development costs in the creation of new designs or modification of existing designs. Several standards for the X Window System have been proposed or implemented that could greatly reduce the time spent evaluating GUIs. We implemented a User Interface Testbed (UseIT) based on the proposed Remote Access Protocol (RAP) standard. UseIT was created to automatically record an end user`s interaction with a Motif GUI application without modification or re-linking of existing code. The recorded interaction could then be replayed or displayed visually for interpretation by a human factors specialist. The end goal was to recreate the GUI and automatically recommend design changes based upon the interactions.

More Details

Photovoltaic module and array performance characterization methods for all system operating conditions

King, David L.

This paper provides new test methods and analytical procedures for characterizing the electrical performance of photovoltaic modules and arrays. The methods use outdoor measurements to provide performance parameters both at standard reporting conditions and for all operating conditions encountered by typical photovoltaic systems. Improvements over previously used test methods are identified, and examples of the successful application of the methodology are provided for crystalline- and amorphous-silicon modules and arrays. This work provides an improved understanding of module and array performance characteristics, and perhaps most importantly, a straight- forward yet rigorous model for predicting array performance at all operating conditions. For the first time, the influences of solar irradiance, operating temperature, solar spectrum, solar angle-of- incidence, and temperature coefficients are all addressed in a practical way that will benefit both designers and users of photovoltaics.

More Details

Investigation of effects of deposition parameters on composition, microstructure,a nd emission of RF sputtered SrS:Eu thin film phosphors

Ruffner, Judith A.

There has been little systematic study of the cause of dead (inactive) layers in II-VI phosphors used in thin film electroluminescent devices. This paper discusses preparation and characterization of rf sputter deposited Eu-doped Sr sulfide (SrS:Eu) thin films for use in a study to determine the cause of the dead layer. (The dead layer`s behavior is likely influenced by thin film composition, crystallinity, and microstructure.) We have deposited SrS:Eu thin films in a repeatable, consistent manner and have characterized properties such as composition, crystallinity, and microstructure as well as photoluminescent (PL) and electroluminescent behavior. The composition was determined using Rutherford backscattering spectrometry and electron microprobe analysis. XRD was used to assess crystalline orientation and grain size, SEM to image thin film microstructure. Measuring the PL decay after subnanosecond laser excitation in the lowest absorption band of the dopant allowed direct measurement of the dopant luminescence efficiency.

More Details

EMMA: Electromechanical Modeling in ALEGRA

Robinson, Allen C.

To ensure high levels of deterrent capability in the 21st century, new stockpile stewardship principles are being embraced at Sandia National Laboratories. The Department of Energy Accelerated Strategic Computing Initiative (ASCI) program is providing the computational capacity and capability as well as funding the system and simulation software infrastructure necessary to provide accurate, precise and predictive modeling of important components and devices. An important class of components require modeling of piezoelectric and ferroceramic materials. The capability to run highly resolved simulations of these types of components on the ASCI parallel computers is being developed at Sandia in the ElectroMechanical Modeling in Alegra (EMMA) code. This a simulation capability being developed at Sandia National Laboratories for high-fidelity modeling of electromechanical devices. these devices can produce electrical current arising from material changes due to shock impact or explosive detonation.

More Details

Building on and spinning off: Sandia National Labs` creation of sensors for Vietnam

Ullrich, Rebecca A.

This paper discusses Sandia National Laboratories` development of new technologies for use in the Vietnam War - specifically the seismic sensors deployed to detect troop and vehicle movement - first along the Ho Chi Minh Trail and later in perimeter defense for American military encampments in South Vietnam. Although the sensor story is a small one, it is interesting because it dovetails nicely with our understanding of the war in Vietnam and its frustrations; of the creation of new technologies for war and American enthusiasm for that technology; and of a technological military and the organizational research and a m am development structure created to support it. Within the defense establishment, the sensors were proposed within the context of a larger concept - that of a barrier to prevent the infiltration of troops and supplies from North Vietnam to the South. All of the discussion of the best way to fight in Vietnam is couched in the perception that this was a different kind of war than America was used to fighting. The emphasis was on countering the problems posed by guerrilla/revolutionary warfare and eventually by the apparent constraints of being involved in a military action, not an outright war. The American response was to find the right technology to do the job - to control the war by applying a technological tincture to its wounds and to make the war familiar and fightable on American terms. And, when doubts were raised about the effectiveness of applying existing technologies (namely, the bombing of North Vietnam and Laos), the doubters turned to new technologies. The sensors that were developed for use in Vietnam were a direct product of this sort of thinking - on the part of the engineers at Sandia who created the sensors, the civilian scientific advisors who recommended them, and, ultimately, the soldiers in the field who had to use them.

More Details

Perimeter security for Minnesota correctional facilities

Spencer, D.S.

For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

More Details

Why mechanical subsystems are difficult to integrate

Segalman, Daniel J.

Though the theme of System Engineering is integration, and it is normal to attempt in integration to ignore the lines between disciplines, there are distinct characteristics of the mechanical design portion of any major system design project that make this difficult. How these characteristics compound the difficulty of integration is discussed and means to minimize the associated obstacles are suggested.

More Details

Nondestructive inspection of bonded composite doublers for aircraft

Roach, Dennis P.

One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No single NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.

More Details

Photovoltaics in the Department of Defense

Chapman, R.N.

This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense`s Tri-Service Photovoltaic Review Committee and the committee`s strategic plan to realize photovoltaic`s fall potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic`s potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today`s prices. The paper describes photovoltaic`s potential within the Department of Defense, the status and features of the 2.1 MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s.

More Details

Recent results of high heat flux testing at the Plasma Materials Test Facility

Watson, R.D.

High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories in Albuquerque, New Mexico. This facility, an official Department of Energy User Facility, has been in operation for over 15 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton, the DIII-D tokamak pt General Atomics, and Alcator C-Mod at MIT, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux burnout tests, braze reliability tests, and safety related tests. The program`s main focus now is on testing of beryllium and tungsten armor tiles bonded to divertor, limiter, and first wall components for the International Thermonuclear Experimental Reactor (ITER). The ITER project is a collaboration among the US, EU, RF, and Japanese fusion programs. This article provides a brief overview of the high heat flux testing capabilities at the PMTF, and describes some recent test results.

More Details

Sticky foam as a less-than-lethal technology

Scott, Steven H.

Sandia National Labs (SNL) in 1994 completed a project funded by the National Institute of Justice (NIJ) to determine the applicability of sticky foam for correctional applications. Sticky foam is an extremely tacky, tenacious material used to block, entangle, and impair individuals. The NIJ project developed a gun capable of firing multiple shots of sticky foam, tested the gun and sticky foam effectiveness on SNL volunteers acting out prison and law enforcement scenarios, and had the gun and sticky foam evaluated by correctional representatives. Based on the NIJ project work, SNL supported the Marine Corps Mission, Operation United Shield, with sticky foam guns and supporting equipment to assist in the withdrawal of UN Peacekeepers from Somalia. Prior to the loan of the equipment, the Marines were given training in sticky foam characterization, toxicology, safety issues, cleanup and waste disposal, use limitations, use protocol and precautions, emergency facial clean-up, skin cleanup, gun filling, targeting and firing, and gun cleaning. The Marine Corps successfully used the sticky foam guns as part of that operation. This paper describes these recent developments of sticky foam for non-lethal uses and some of the lessons learned from scenario and application testing.

More Details

Core damage frequency (reactor design) perspectives based on IPE results

Camp, Allen L.

This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed.

More Details

Optical properties of lanthanide-containing halide-modified zinc tellurite glasses

Sidebottom, D.L.; Hruschka, M.A.; Potter, B.G.; Brow, R.K.; Hudgens, J.J.

As part of an ongoing investigation to characterize the properties and structure of Zn halide-Te oxide glasses, we report preliminary measurements of the optical properties of several Nd- and Er-doped tellurites. Measurements include fluorescence lifetimes and estimates of the theoretical radiative lifetimes (from traditional Judd-Ofelt analysis of optical absorption spectra) as well as phonon sideband studies sensitive to vibrational characteristics near the rare earth ion. Response of these optical features to the substitution of alternative halides is examined.

More Details

A polygonal method for haptic force generation

Anderson, T.

Algorithms for computing forces and associated surface deformations (graphical and physical) are given, which, together with a force feedback device can be used to haptically display virtual objects. The Bendable Polygon algorithm, created at Sandia National Labs and the University of New Mexico, for visual rendering of computer generated surfaces is also presented. An implementation using the EIGEN virtual reality environment, and the PHANToM (Trademark) haptic interface, is reported together with suggestions for future research.

More Details

A zooming Web browser

Forsythe, Christi A.

We are developing a prototype zooming World-Wide Web browser within Pad++, a multiscale graphical environment. Instead of having a single page visible at a time, multiple pages and the links between them are depicted on a large zoomable information surface. Pages are scaled so that the page in focus is clearly readable with connected pages shown at smaller scales to provide context. We quantitatively compared performance with the Pad++ Web browser and Netscape in several different scenarios. We examined how quickly users could answer questions about a specific Web site designed for this test. Initially we found that subjects answered questions slightly slower with Pad++ than with Netscape. After analyzing the results of this study, we implemented several changes to the Pad++ Web browser, and repeated one Pad++ condition. After improvements were made to the Pad++ browser, subjects using Pad++ answered questions 23% faster than those using Netscape.

More Details

Cryptography and the Internet: lessons and challenges

Mccurley, K.S.

The popularization of the Internet has brought fundamental changes to the world, because it allows a universal method of communication between computers. This carries enormous benefits with it, but also raises many security considerations. Cryptography is a fundamental technology used to provide security of computer networks, and there is currently a widespread engineering effort to incorporate cryptography into various aspects of the Internet. The system-level engineering required to provide security services for the Internet carries some important lessons for researchers whose study is focused on narrowly defined problems. It also offers challenges to the cryptographic research community by raising new questions not adequately addressed by the existing body of knowledge. This paper attempts to summarize some of these lessons and challenges for the cryptographic research community.

More Details

Optical modeling of certical-cavity surface-emitting lasers

Hadley, G.R.

Vertical-cavity surface-emitting lasers (VCSELs) are presently the subject of intense research due to their potential as compact, efficient, astigmatic laser sources for a number of important applications. Of special interest are the selectively-oxidized VCSELs that have recently set records for threshold current and wall-plug efficiency. The onset of higher-order modes at powers of a few milliWatts, however, presently limits the wide utilization of these devices and indicates the need for improvements in design. Unfortunately, their complexity precludes optimization based solely upon empirical methods, and points instead to the need for better numerical models. Modeling the optical field in a vertical-cavity laser, however, is especially difficult due to both the high Q of the optical cavity and the distributed reflectivity of the mirrors. Our approach to this dilemma has been the development of modeling techniques on two complexity scales. We first derived an effective- index model that is numerically efficient and thus can be included together with carrier transport and thermal models to make up a self-consistent modeling package. In addition to its use in the overall VCSEL model, this simplified optical model has been extremely valuable in elucidating the basic principles of waveguiding in VCSELs that in turn have led to new ideas in device design. More specifically, the derived expression for the effective index shows clearly that index guiding in a VCSEL depends only on variations in optical cavity length, and thus can be engineered without the need to alter the material index of refraction. Also, we have designed index- guided and antiguided devices whose cavity lengths are modified in certain regions by etching of the cavity material prior to growth of the second mirror. Fabrication of these new device designs is presently in progress.

More Details

Miniaturized robotically deployed sensor systems for in-situ characterization of hazardous waste

Fischer, Gary J.

A series of ``MiniLab`` end effectors are currently being designed for robotic deployment in hazardous areas such as waste storage tanks at Idaho National Engineering Laboratories (INEL) and Oak Ridge National Laboratory (ORNL). These MiniLabs will be the first ever multichannel hazardous waste characterization end effectors deployed in underground high level waste storage tanks. They consist of a suite of chemical, radiological, and physical properties sensors integrated into a compact package mounted on the end of a robotic arm and/or vehicle. Most of the sensors are commercially available thus reducing the overall cost of design and maintenance. Sensor configurations can be customized depending on site/customer needs. This paper will address issues regarding the cost of field sampling verses MiniLab in-situ measurements and a brief background of the Light Duty utility Arm (LDUA) program. Topics receiving in depth attention will include package size parameters/constraints, design specifications, and investigations of currently available sensor technology. Sensors include radiological, gas, chemical, electrolytic, visual, temperature, and ranging. The effects of radiation on the life of the systems/sensors will also be discussed. Signal processing, control, display, and data acquisition methods will be described. The paper will conclude with an examination of possible applications for MiniLabs.

More Details

Rapid world modeling: Fitting range data to geometric primitives

Feddema, John T.

For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE`s waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data.

More Details

Miniature Autonomous Robotic Vehicle (MARV)

Feddema, John T.

Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

More Details

Rocinante, a virtual collaborative visualizer

Mcdonald, Michael J.

With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired. Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.

More Details

Capacitive tool standoff sensor for dismantlement tasks

Schmitt, D.J.

A capacitive sensing technology has been applied to develop a Standoff Sensor System for control of robotically deployed tools utilized in Decontamination and Dismantlement (D and D) activities. The system combines four individual sensor elements to provide non-contact, multiple degree-of-freedom control of tools at distances up to five inches from a surface. The Standoff Sensor has been successfully integrated to a metal cutting router and a pyrometer, and utilized for real-time control of each of these tools. Experiments demonstrate that the system can locate stationary surfaces with a repeatability of 0.034 millimeters.

More Details

Laboratory evaluation of colloidal actinide transport at the Waste Isolation Pilot Plant (WIPP): 1. crushed-dolomite column flow...

Yelton, W.G.; Behl, Y.K.; Kelly, J.W.; Dunn, M.; Gillow, J.B.; Francis, A.J.; Papenguth, H.W.

Colloid-facilitated transport of Pu, Am, U, Th, and Np has been recognized as a potentially important phenomenon affecting the performance of the Waste Isolation Pilot Plant (WIPP) facility being developed for safe disposal of transuranic radioactive waste. In a human intrusion scenario, actinide-bearing colloidal particles may be released from the repository and be transported by brines (approximately 0.8 to 3 molal ionic strength) through the Culebra, a thin fractured microcrystalline (mean grain size 2 micrometers) dolomite aquifer overlying the repository. Transport experiments were conducted using sieved, uniformly packed crushed Culebra rock or nonporous dolomite cleavage rhombohedra. Experiments with mineral fragments and fixed and live WIPP-relevant bacteria cultures showed significant levels of retardation due to physical filtration effects. Humic substances were not attenuated by the Culebra dolomite. Comparison of elution curves of latex microspheres in columns prepared with microcrystalline rock and nonporous rock showed minimal effect of Culebra micropores on colloid transport. These data form part of the basis to parameterize numerical codes being used to evaluate the performance of the WIPP.

More Details

Quality assurance in China: a sleeping tiger awakens

Baehr, R.M.

The People`s Republic of China has undergone major economic reform in the past decade producing a new free-market system that is distinctly Chinese. The Chinese realize that to be successful in world trade, quality management and export trading must be given the highest priority in China`s strategic economic plans. Many manufacturing companies are now implementing Total Quality Management (TQM) and the ISO 9000 i quality management standards. A first hand survey of the quality movement in China today is the objective of this paper.

More Details
Results 94301–94350 of 99,299
Results 94301–94350 of 99,299