A 30-kVA Trace Technologies hybrid power processor was specified and tested at the Sandia inverter test facility. Trace Technologies involving the control system, in response to suggestions made modifications, primarily by Sandia and Arizona Public Service (APS) personnel. The modifications should make the inverter more universally applicable and less site-specific so that it can be applied in various sites with minimal field interaction required from the design engineer. The project emphasized the importance of battery management, generator selection, and site load management to the performance and reliability of hybrid power systems.
We describe Chemical Solution Deposition (CSD) processes by which Strontium Bismuth Tantalate (SBT) thin films can be prepared at temperatures as low as 550 C. In this paper, we will present strategies used to optimize the properties of the films including solution chemistry, film composition, the nature of the substrate (or bottom electrode) used, and the thermal processing cycle. Under suitable conditions, {approximately} 1700 {angstrom} films can be prepared which have a large switchable polarization (2P{sub r} > 10{micro}C/cm{sup 2}), and an operating voltage, defined as the voltage at which 0.80 x 2P{sub r} max is switched, 2.0V. We also describe an all-alkoxide route to SBT films from which SBT can be crystallized at 550 C.
Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.
Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.
We investigated the interaction of dissolved actinides Th, U, Np Zgpu, and Am, with a pure and a mixed culture of halophilic bactezia isolated from the Waste Isolation H.Iot Plant repository under anaerobic conditions to evaluate their potentiaI transport as biocolloids from the waste site. The sizes of the bacterial cells studied ranged from ().54 x 0.48 pm to 7.7 x 0.67pm Using sequential mimofiltration, we determined the ~~ation of actinides with fi-ee-living (mobile) bacterial cells suspended in a fluid medium containing. NaCl or M=W12 brine, at various phaes of their growth cycIes. The number of suspended kcteria rangy-d born 106 to 109 cells ml-*. Tine amount of actinide associatd with the wspend~ cell fraction (cakzdated & mol cell-*) was very Iow: Th, 10-*2; U, 10-1s - 10-lS; - ~ Np, 1o-15- 10-19; Pu, 10-ls -10-21 ; and h, 10-1* - 10-*9 ; and it varied with the bacteihl - CUIture studied. l%e differe&es in the asswiation are amibuted to the extent of bioamxmdation and biosorption by the bacteria pH, the compo&on of the brine, and the speziation and bioavaiIability of the actinides.
The search for a photonic crystal to confine optical waves in all three dimensions (3D) has proven to be a formidable task. It evolves from an early theoretical suggestion [1,2], a brief skepticism [3-5] and triumph in developing the mm-wave [6-8] and infrared 3D photonic crystals [9]. Yet, the challenge remains, as the ultimate goal for optoelectronic applications is to realize a 3D crystal at X=1.5 pm communication wavelengths. Operating at visible and near infrared wavelengths, X=1-2 pm, a photonic crystal may enhance the spontaneous emission rate [1, 10] and give rise to a semiconductor lasers with a zero lasing threshold[11, 12]. Another important application is optically switching, routing and interconnecting light [13,14] with an ultrafast transmission speed of terabits per second. A photonic crystal may also serve as a platform for integrating an all-optical circuitry with multiple photonic components, such as waveguides and switches, built on one chip [15]. In this Letter, we report on the successful fabrication of a working 3D crystal operating at optical L The minimum feature size of the 3D structure is 180 nanometers. The 3D crystal is free from defects over the entire 6-inch silicon wafer and has an absolute photonic band gap centered at A.-1.6 pm. Our data provides the first conclusive evidence for the existence of a full 3D photonic band gap in optical A. This development will pave the way to tinier, cheaper, more effective waveguides, optical switches and lasers.
The effects of the additive noble gases He, Ar and Xe on chlorine-based Inductively Coupled Plasma etching of InP, InSb, InGaP and InGaAs were studied as a function of source power, chuck power and discharge composition. The etch rates of all materials with C12/He and C12/Xe are greater than with C12/Ar. Etch rates in excess of 4.8 pndmin for InP and InSb with C12/He or C12/Xe, 0.9 pndmin for InGaP with C12/Xe, and 3.8 prdmin for InGaAs with Clz/Xe were obtained at 750 W ICP power, 250 W rf power, - 1570 C12 and 5 mTorr. All three plasma chemistries produced smooth morphologies for the etched InGaP surfaces, while the etched surface of InP showed rough morphology under all conditions.
Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.
The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.
We have completed and exercised a communication framework called CHI (CLOS to HTML Interface) by which agents can communicate with humans. CHI follows HTTP (HyperText Transfer Protocol) and produces HTML (HyperText Markup Language) for use by WWW (World-Wide Web) browsers. CHI enables the rapid and dynamic construction of interface mechanisms. The essence of CHI is automatic registration of dynamically generated interface elements to named objects in the agent's internal environment. The agent can access information in these objects at will. State is preserved, so an agent can pursue branching interaction sequences, activate failure recovery behaviors, and otherwise act opportunistically to maintain a conversation. The CHI mechanism remains transparent in multi-agent, multi-user environments because of automatically generated unique identifiers built into the CHI mechanism. In this paper we discuss design, language, implementation, and extension issues, and, by way of illustration, examine the use of the general CHI/HCHI mechanism in a specific international electronic commerce system. We conclude that the CHI mechanism is an effective, efficient, and extensible means of the agent/human communication.
We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work fimction, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a SqOq matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.
The Video Scanning Hartmann Optical Tester (VSHOT) is a laser ray-trace tool for measuring the slope error of solar concentrator mirrors. The VSHOT measurements made on two, 8.5-m diameter, Distal II dishes represent its first use on a concentrator installed and operating in the field. A number of valuable lessons were learned regarding the use of the VSHOT for outdoor testing. The two dishes were found to have overall figure-of-merit RMS slope errors from an ideal parabola of 2.99 and 3.18 milliradians. The VSHOT measurements compare well qualitatively with distant observer photographs made using a colored concentric ring target.
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
International Journal of Rock Mechanics and MIning Science
Wawersik, W.R.
Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.
Highly crystalline, size-selected silicon (Si) nanocrystals in the size range 2-10 nm were grown in inverse micelles and their optical absorption and photoluminescence (PL) properties were studied. High resolution TEM and electron diffraction results show that these nanocrystals retain their cubic diamond stuctures down to sizes {approximately}4 nm in diameter, and optical absorption data suggest that this structure and bulk-like properties are retained down to the smallest sizes produced ({approximately}1.8 nm diameter containing about 150 Si atoms). High pressure liquid chromatography techniques with on-line optical and electrical diagnostics were developed to purify and separate the clusters into pure, monodisperse populations. The optical absorption revealed features associated with both the indirect and direct bandgap transitions, and these transitions exhibited different quantum confinement effects. The indirect bandgap shifts from 1.1 eV in the bulk to {approximately}2.1 eV for nanocrystals {approximately}2 nm in diameter and the direct transition at r(l_"X - r15) blue shifts by 0.4 eV from its 3.4 eV bulk value over the same size range. Tailorable, visible, room temperature PL in the range 700-350 nm (1.8 - 3.5 eV) was observed from these nanocrystals. The most intense PL was in the violet region of the spectrum ({approximately}400 nm) and is attributed to direct electron-hole recombination. Other less intense PL peaks are attributed to surface state and to indirect bandgap recombination. The results are compared to earlier work on Si clusters grown by other techniques and to the predictions of various model calculations. Currently, the wide variations in the theoretical predictions of the various models along with considerable uncertainties in experimental size determination for clusters less than 3-4 nm, make it difficult to select among competing models.
Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient.
In this paper we report absolute intensities of vacuum ultraviolet and near ultraviolet emission lines (4.8 eV to 18 eV ) for aluminum etching discharges in an inductively coupled plasma reactor. We report line intensities as a function of wafer type, pressure, gas mixture and rf excitation level. IrI a standard aluminum etching mixture containing C12 and BC13 almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the WV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we see total photon fluxes to the wailer at energies above 8.8 eV on the order of 4 x 1014 photons/cm2sec with anon- reactive wafer and 0.7 x 10 `4 photons/cm2sec with a reactive wtier. The maj ority of the radiation observed was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in Si02, but may penetrate up to a micron into the Si02 before being absorbed. Relevance of these measurements to vacuum-W photon-induced darnage of Si02 during etching is discussed.
To examine the forces of acid-base adhesive interactions at the molecular level, we utilize the scanning probe Interracial Force Microscope (IFM). Unlike cantilever-based atomic force microscopes, the EM is a non-compliant, mechanically stable probe that provides a complete adhesive profile without jump-to-contact. In this way, we are able to quantitatively measure the work of adhesion and bond energies at well-defined, nanometer-scale single asperity contacts. In particular, we will discuss the displacement-controlled adhesive forces between self-assembled monolayer of functionalized alkanethiols strongly bound to a gold substrate and a similarly functionalized tip. We also discuss a method utilizing decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and chemical bond formation. Measurements show that friction can be directly attributed to bond formation and rupture well before repulsive contact.
To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.
Patterning the group-IH nitrides has been challenging due to their strong bond energies and relatively inert chemical nature as compared to other compound semiconductors. Plasma etch processes have been used almost exclusively to pattern these films. The use of high-density plasma etch systems, including inductively coupled plasmas (ICP), has resulted in relatively high etch rates (often greater than 1.0 pmhnin) with anisotropic profiles and smooth etch morphologies. However, the etch mechanism is often dominated by high ion bombardment energies which can minimize etch selectivity. The use of an ICP-generated BCl~/C12 pkyma has yielded a highly versatile GaN etch process with rates ranging from 100 to 8000 A/rnin making this plasma chemistry a prime candidate for optimization of etch selectivity. In this study, we will report ICP etch rates and selectivities for GaN, AIN, and InN as a function of BCl~/Clz flow ratios, cathode rf-power, and ICP-source power. GaN:InN and GaN:AIN etch selectivities were typically less than 7:1 and showed the strongest dependence on flow ratio. This trend maybe attributed to faster GaN etch rates observed at higher concentrations of atomic Cl which was monitored using optical emission spectroscopy (OES). ~E~~~~f:~ INTRODUCTION DEC j 4898 Etch selectivi
At the 1995 IEEE Symposium on Assembly and Task Planning, Sandia National Laboratories introduced the Archimedes 2 Software Tool [2]. The system was described as a second-generation assembly planning system that allowed preliminmy application of awembly planning for industry, while solidly supporting further research in planning techniques. Sandia has worked closely with indust~ and academia over the last four years. The results of these working relationships have bridged a gap for the next generation in assembly planning. Zke goal of this paper is to share Sandia 's technological advancements in assembly planning over the last four years and the impact these advancements have made on the manufacturing communip.
When a product concept emerges, the manufacturing engineer is asked to sketch out a production strategy and estimate its cost. The engineer is given an initial product design, along with a schedule of expected production volumes. The engineer then determines the best approach to manufacturing the product, comparing a variey of alternative production strategies. The engineer must consider capital cost, operating cost, lead-time, and other issues in an attempt to maximize pro$ts. After making these basic choices and sketching the design of overall production, the engineer produces estimates of the required capital, operating costs, and production capacity. 177is process may iterate as the product design is refined in order to improve its pe~ormance or manufacturability. The focus of this paper is on the development of computer tools to aid manufacturing engineers in their decision-making processes. This computer sof~are tool provides aj?amework in which accurate cost estimates can be seamlessly derivedfiom design requirements at the start of any engineering project. Z+e result is faster cycle times through first-pass success; lower ll~e cycie cost due to requirements-driven design and accurate cost estimates derived early in the process.