Publications

Results 92601–92625 of 99,299

Search results

Jump to search filters

Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

Dwyer, Brian P.

In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

More Details

Scanning Probe-Based Processes for Nanometer-Scale Device Fabrication

Mayer, Thomas M.

This is the final report of an LDRD program entitled 'Scanning Probe-Based Processes for Nanometer-Scale Device Fabrication'. This program intends to expand Sandia's expertise in scanning-probe based fabrication and characterization of nanostructures. Our object is to achieve an order of magnitude decrease in feature size compared to conventional fabrication technology. We are exploring approaches to nanostructure fabrication and characterization using scanning probe-based (STM, AFM). We also are developing numerical simulations of localized electric field and emission current to explore mechanisms and characterize limits to processing techniques. We emphasize novel fabrication processes and characterization of physical, chemical and electronic effects in nanostructures.

More Details

A Robotic Pinch-Off System for the Sealing of Neutron Tube Assemblies

Schmale, David T.

The process of manufacturing the MC4277 Neutron Tube requires the evacuation of the device through a 4.76 mm (.1875 in.) OD copper tube. Eight tubes are simultaneously evacuated and then baked out. When the process is completed, the tubes must be separated from the system without compromising the ultra-high vacuum in the tube and the system. Previously, a manual pinch-off tool was used. This procedure required up to 3 operators with a high probability of creating defective seals or destroyed tubes. Two new identical robotic systems were built to allow a single operator to consistently produce good tubes with perfect seals. These systems have the added capability of partially pinching off tubes at jaw displacements repeatable to *0.05 mm (kO.002 in.). Both systems have operated flawlessly since their installation in January and March, 1998. A detailed description of these systems is given in this report.

More Details

Subsidence at the Weeks Island SPR Facility

Bauer, Stephen J.

The elevation change data measured at the Weeks Island SPR site over the last 16+ years has been studied and analyzed. The subsidence rate is not constant with time and while the subsidence rate may have increased slightly during the past several years, recently the rate has increased more dramatically. The most recent increase comes at a time when the Strategic Petroleum Reserve (SPR) storage mine had been emptied of oil and was in the process of being refilled with brine. Damage to surface structures that has been observed during the past 12-18 months is attributed to the continued subsidence and dtierential subsidence across structures. The recent greater subsidence rates were unanticipated according to analysis results and will be used to aid further subsidence model development.

More Details

Path planning for complex terrain navigation via dynamic programming

Kwok, K.S.; Driessen, B.J.

This work considers the problem of planning optimal paths for a mobile robot traversing complex terrain. In addition to the existing obstacles, locations in the terrain where the slope is too steep for the mobile robot to navigate safely without tipping over become mathematically equivalent to extra obstacles. To solve the optimal path problem, the authors use a dynamic programming approach. The dynamic programming approach utilized herein does not suffer the difficulties associated with spurious local minima that the artificial potential field approaches do. In fact, a globally optimal solution is guaranteed to be found if a feasible solution exists. The method is demonstrated on several complex examples including very complex terrains.

More Details

In-field use of laser Doppler vibrometer on a wind turbine blade

Rumsey, M.; Hurtado, J.; Hansche, B.

One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

More Details

Aeroelastic behavior of twist-coupled HAWT blades

Lobitz, Donald W.

As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.

More Details

Damage measurements on the NWTC direct-drive, variable-speed test bed

Sutherland, Herbert J.

The NWTC (National Wind Technology Center) Variable-Speed Test Bed turbine is a three-bladed, 10-meter, downwind machine that can be run in either fixed-speed or variable-speed mode. In the variable-speed mode, the generator torque is regulated, using a discrete-stepped load bank to maximize the turbine`s power coefficient. At rated power, a second control loop that uses blade pitch to maintain rotor speed essentially as before, i.e., using the load bank to maintain either generator power or (optionally) generator torque. In this paper, the authors will use this turbine to study the effect of variable-speed operation on blade damage. Using time-series data obtained from blade flap and edge strain gauges, the load spectrum for the turbine is developed using rainflow counting techniques. Miner`s rule is then used to determine the damage rates for variable-speed and fixed-speed operation. The results illustrate that the controller algorithm used with this turbine introduces relatively large load cycles into the blade that significantly reduce its service lifetime, while power production is only marginally increased.

More Details

Inversion of Passive Electromagnetic Fields to Locate Weapons of Mass Destruction

Newman, Gregory A.

A resolution study, employing a 3D nonlinear optimization technique, has been undertaken to study the viability of magnetotelluric (MT) measurements to detect and characterize buried facilities that make weapons of mass destruction. A significant advantage of the MT method is that no active source is required because the method employs passive field emissions. Thus measurements can be carried out covertly. Findings indicate it is possible to image WMD facilities, including depth of burial and lateral extent if a sufficient number of measurements are taken on the perimeter of the facility. Moreover if a station measurement can be made directly over the facility then the resolution is improved accordingly. In all cases it was not possible to image the base of the facility with any confidence as well as provide any precise inferences on the facility electrical conductivity. This later finding, however, is really not that critical since knowledge of facility geometry is far more important than knowledge of its conductivity. For the WMD problem it is recommended that MT measurements be made solely with the magnetic field ratios. In this context it would then be possible to deploy with far greater ease small coils about a suspected facility and would allow for the measurements to be conducted in a more covert manner. Before testing such a measurement system in the field, however, it would be necessary to carry out a similar resolution analysis as was done with MT measurements based on electric and magnetic fields. This is necessary to determine sensitivity of the proposed measurement to underground facilities along with needed data coverage and quality. Such a study is indispensable in producing useful reconstructions of underground facilities.

More Details

Effects of Hydrogen Implantation into GaN

Nuclear Instrumentation and Methods in Physical Research

Shul, Randy J.

Proton implantation in GaN is found to reduce the free carrier density through two mechanisms - first, by creating electron and hole traps at around Ec-0.8eV and Ev+0.9eV that lead to compensation in both n- and p-type material, and second, by leading to formation of (AH)O complexes, where A is any acceptor (Mg, Ca, Zn, Be, Cd). The former mechanism is usefid in creating high resistivity regions for device isolation, whereas the latter produces unintentional acceptor passivation that is detrimental to device performance. The strong affinity of hydrogen for acceptors leads to markedly different redistribution behavior for implanted in n- and p-GaN due to the chemical reaction to form neutral complexes in the latter. The acceptors may be reactivated by simple annealing at 2600{degrees}C, or by electron injection at 25-150{degrees}C that produces debonding of the (AH) centers. Implanted hydrogen is also strongly attracted to regions of strain in heterostructure samples during annealing, leading to pile-up at epi-epi and epi-substrate interfaces. II? spectroscopy shows that implanted hydrogen also decorates VG, defects in undoped and n-GaN.

More Details

Development of GaAs-Based Monolithic Surface Acoustic Wave Devices for Chemical Sensing and RF Filter Applications

Compound Semiconductor Magazine

Heller, Edwin J.

Since their invention in the mid-1960's, surface acoustic wave (SAW) devices have become popular for a wide variety of applications. SAW devices represent a low-cost and compact method of achieving a variety of electronic signal processing functions at high frequencies, such as RF filters for TV or mobile wireless communications [1]. SAW devices also provide a convenient platform in chemical sensing applications, achieving extremely high sensitivity to vapor phase analytes in part-per-billion concentrations [2]. Although the SAW acoustic mode can be created on virtually any crystalline substrate, the development of SAW technology has historically focused on the use of piezoelectric materials, such as various orientations of either quartz or lithium niobate, allowing the devices to be fabricated simply and inexpensively. However, the III-V compound semiconductors, and GaAs in particular, are also piezoelectric as a result of their partially covalent bonding and support the SAW acoustic mode, allowing for the convenient fabrication of SAW devices. In addition, GaAs microelectronics has, in the past decade, matured commercially in numerous RF wireless technologies. In fact, GaAs was recognized long ago as a potential candidate for the monolithic integration of SAW devices with microelectronics, to achieve compact RF signal processing functions [3]. The details of design and fabrication of SAW devices can be found in a variety of references [1].

More Details

Construction Costs of Six Landfill Cover Designs

Dwyer, S.F.

A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

More Details

Effect of Inert Gas Additive Species on Cl(2) High Density Plasma Etching of Compound Semiconductors: Part 1. GaAs and GaSb

Applied Surface Sciences

Shul, Randy J.

The role of the inert gas additive (He, Ar, Xe) to C12 Inductively Coupled Plasmas for dry etching of GaAs and GaSb was examined through the effect on etch rate, surface roughness and near-surface stoichiometry. The etch rates for both materials go through a maximum with Clz 0/0 in each type of discharge (C12/'He, C12/Ar, C12/Xc), reflecting the need to have efficient ion-assisted resorption of the etch products. Etch yields initially increase strongly with source power as the chlorine neutral density increases, but decrease again at high powers as the etching becomes reactant-limited. The etched surfaces are generally smoother with Ax or Xe addition, and maintain their stoichiometry.

More Details

Direct Molecular Simulation of Gradient-Driven Diffusion of Large Molecules using Constant Pressure

Journal of Chemical Physics

Thompson, A.P.

Dual control volume grand canonical molecular dynamics (DCV-GCMD) is a boundary-driven non-equilibrium molecular dynamics technique for simulating gradient driven diffusion in multi-component systems. Two control volumes are established at opposite ends of the simulation box. Constant temperature and chemical potential of diffusing species are imposed in the control volumes. This results in stable chemical potential gradients and steady-state diffusion fluxes in the region between the control volumes. We present results and detailed analysis for a new constant-pressure variant of the DCV-GCMD method in which one of the diffusing species for which a steady-state diffusion flux exists does not have to be inserted or deIeted. Constant temperature, pressure and chemical potential of all diffusing species except one are imposed in the control volumes. The constant-pressure method can be applied to situations in which insertion and deletion of large molecules would be prohibitively difficult. As an exampIe, we used the method to shnulate diffusion in a biruuy mixture of spherical particles with a 2:1 size ratio. Steady-state diffusion fluxes of both diffbsi.ng species were established. The constant-pressure diffision coefficients agreed closely with the results of the standard constant-volume calculations. In addition, we show how the concentration, chemical potential and flux profiles can be used to calculate kwd binary and Maxwell-Stefim diffusion coefficients. In the case of the 2:1 size ratio mixture, we found that the binary dlffision coefficients were asymmetric and composition dependent, whereas the Maxwell-Stefan diffision coefficients changed very little with composition and were symmetric. This last result verified that the Gibbs-Duhem relation was satisfied locally, thus validating the assumption of local equilibrium.

More Details

On Boundary Misorientation Distribution Functions and How to Incorporate them into 3D Models of Microstructural Evolution

Acta Mat.

Miodownik, M.

The fundamental difficulties incorporating experimentally obtained-boundary disorientation distributions (BMD) into 3D microstructural models are discussed. An algorithm is described which overcomes these difficulties. The boundary misorientations are treated as a statistical ensemble which is evolved toward the desired BMD using a Monte Carlo method. The application of this algorithm to a number complex arbitrary BMDs shows that the approach is effective for both conserved and non-conserved textures. The algorithm is successfully used to create the BMDs observed in deformation microstructure containing both incidental dislocation boundaries (IDBs) and geometrically necessary boundaries (GNBs).

More Details

Computer Simulation of Grain Growth Kinetics with Solute Drag

Journal of Materials Research

Fan, D.

The effects of solute dragon grain growth kinetics were studied in two dimensional (2-D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity / low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent m of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent m can take any value between 2 and 3 depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system.

More Details

Some Effects of Specimen and Loading Variables on the Fracture Toughness of Epoxy-to-Substrate Interfaces

Guess, Tommy R.

The nucleation and growth of cracks at critical interfaces can degrade electrical and mechanical performance of electronic assemblies. Sandia National Laboratories is working to develop a fracture mechanics-based approach for assessing the reliability of components containing interfaces and subjected to thermal/mechanical fatigue. Models are being developed to predict the nucleation of a crack-like flaw in the vicinity of an interface, the path of crack propagation (along interface or into substrate), and the conditions for crack propagation. In addition, interfacial fracture toughness data are being generated to support model development. This paper summarizes an experimental study aimed at measuring the fracture toughness of epoxy-to-substrate interfaces that are representative of those found in bonded and encapsulated electronic components.

More Details

A Phase-Field Model for Grain Growth

Tikare, Veena

A phase-field model for grain growth is briefly described. In this model, a poly-crystalline microstructure is represented by multiple structural order parameter fields whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau (TDGL) equations. Results from phase-field simulations of two-dimensional (2D) grain growth will be summarized and preliminary results on three-dimensional (3D) grain growth will be presented. The physical interpretation of the structural order parameter fields and the efficient and accurate semi-implicit Fourier spectral method for solving the TDGL equations will be briefly discussed.

More Details

The Numerical Performance of Wavelets for PDEs: The Multi-Scale Finite Element

Christon, Mark

The research summarized in this paper is part of a multiyear effort focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality in the usual L 2 sense is less desirable than orthogonality in the energy norm. This conclusion has led to the development of a multi-scale lineax finite element based on a hierarchical change-of-basis. This work considers the numerical and computational performance of the hierarchical Schauder basis in a Galerkin context. A unique row-column lumping procedure is developed with multi-scale solution strategies for 1-D and 2-D elliptic partial differential equations.

More Details

Correlation Between the Atomic and Bulk Chemical Potentials of Low work Function Metals

Journal of Applied Physics

Drummond, Timothy J.

An attempt is made to identify preferred values for the work functions of the rare earth elements by correlating the atomic chemical potential with the work function of the bulk elements. Trends in the alkali and alkali earth metal are evaluated in the same context. Strong linear correlation between the two quantities is observed within the IA, 11A, and IIIB (Se, Y, La) groups. Within the lanthanide series the nature of the correlation between the metallic radius and the work function suggests a dependence on the total angular momentum.

More Details

Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells

Nagasubramanian, Ganesan

Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. At Sandia National Laboratories we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cell. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. Our impedance data suggest that while the variation in the electrolyte resistance between room temperature and {minus}20 C is negligible the anode electrolyte interfacial resistance increases by an order of magnitude in the same temperature regime. We believe that the solid electrolyte interface (SEI) layer on the carbon anode may be responsible for the increase in cell impedance. We have also evaluated the cells in hybrid mode with capacitors. High-current operation in the hybrid mode allowed fill usage of the Li-ion cell capacity at 25 C and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

More Details

Sandwich Construction Solar Structural Facets

Diver, R.B.; Grossman, J.W.

Silver/glass mirrors have excellent optical properties but need a method of support in order to be used in concentrating solar thermal systems. In collaboration with the Cummins dish/Stirling development program, they started investigating sandwich construction as a way to integrate silver/glass mirrors into solar optical elements. In sandwich construction, membranes such as sheet metal or plastic are bonded to the front and back of a core (like a sandwich). For solar optical elements, a glass mirror is bonded to one of the membranes. This type of construction has the advantages of a high strength-to-weight ratio, and reasonable material and manufacturing cost. The inherent stiffness of sandwich construction mirror panels also facilitates large panels. This can have cost advantages for both the amount of hardware required as well as reduced installation and alignment costs. In addition, by incorporating the panels into the support structure reductions in the amount of structural support required are potentially possible.

More Details
Results 92601–92625 of 99,299
Results 92601–92625 of 99,299