Publications

Results 92026–92050 of 99,299

Search results

Jump to search filters

Multivariate Analysis and Quantitation of (17)O-NMR in Primary Alcohol Mixtures

Spechochimica Acta

Alam, Kathleen M.

Multivariate techniques were used to address the quantification of {sup 17}O-NMR (nuclear magnetic resonance) spectra for a series of primary alcohol mixtures. Due to highly overlapping resonances, quantitative spectral evaluation using standard integration and deconvolution techniques proved difficult. Multivariate evaluation of the {sup 17}O-NMR spectral data obtained for 26 mixtures of five primary alcohols demonstrated that obtaining information about spectral overlap and interferences allowed the development of more accurate models. Initial partial least squares (PLS) models developed for the {sup 17}O-NMR data collected from the primary alcohol mixtures resulted in very poor precision, with signal overlap between the different chemical species suspected of being the primary contributor to the error. To directly evaluate the question of spectral overlap in these alcohol mixtures, net analyte signal (NAS) analyses were performed. The NAS results indicate that alcohols with similar chain lengths produced severely overlapping {sup 17}O-NMR resonances. Grouping the alcohols based on chain length allowed more accurate and robust calibration models to be developed.

More Details

A Glove Box Enclosed Gas-Tungsten Arc Welding System

Reece, Mark

This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

More Details

InGaAsN: A Novel Material for High-Efficiency Solar Cells and Advanced Photonic Devices

Allerman, A.A.

This report represents the completion of a 6 month Laboratory-Directed Research and Development (LDRD) program that focused on research and development of novel compound semiconductor, InGaAsN. This project seeks to rapidly assess the potential of InGaAsN for improved high-efficiency photovoltaic. Due to the short time scale, the project focused on quickly investigating the range of attainable compositions and bandgaps while identifying possible material limitations for photovoltaic devices. InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photoluminescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Additionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured. The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar cell, with 1.0 eV bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies >70% are obtained. Optical studies indicate that defects or impurities, from doping and nitrogen incorporation, limit cell performance.

More Details

Selective Oxidation Technology and its Applications Toward Electronic and Optoelectronic Devices

Spahn, Olga B.; Allerman, Andrew A.; Choquette, Kent D.; Vawter, Gregory A.; Klem, John F.; Sullivan, Charles T.; Sullivan, John P.; Ashby, Carol I.; Smith, Arlee V.; Raymond, Thomas D.; Alford, Willima J.

Selective oxidation of AlGaAs compounds has facilitated dramatic improvements in the performance of near IR VCSELS. Under the auspices of this proposal we have: (1) expanded our understanding of both the strengths and the limitations of this technology; (2) explored its applicability to other Al bearing materials; (3) utilized this technology base to demonstrate a variety of new electronic and optoelectronic devices; and (4) established the reliability and manufacturability of oxidized devices such as VCSELS. Specifically, we have investigated conditions required to maximize control of the oxidation process as well as those required to facilitate inhibit etching of the resultant oxide. Concurrently, studies were performed to extend the technology to other Al-bearing compounds such as Al(Ga)AsSb, InAl(Ga)P and Al(Ga)N. Several new devices utilizing the selective oxidation technology of AlGaAs, as well as Al(Ga)AsSb were be considered. On a separate front, we also explored the possibility of using oxidized AlGaAs and InAl(Ga)P to form GaAs/AIGaAs FETs. Finally, reliability and manufacturability issues of the high performance VCSELS fabricated using selective oxidation technology, were addressed.

More Details

Sandia National Laboratories Electrochemical Storage System Abuse Test Procedure Manual

Unkelhaeuser, Terry M.

The series of tests described in this report are intended to simulate actual use and abuse conditions and internally initiated failures that may be experienced in electrochemical storage systems (ECSS). These tests were derived from Failure Mode and Effect Analysis, user input, and historical abuse testing. The tests are to provide a common framework for various ECSS technologies. The primary purpose of testing is to gather response information to external/internal inputs. Some tests and/or measurements may not be required for some ECSS technologies and designs if it is demonstrated that a test is not applicable, and the measurements yield no useful information.

More Details

Analysis of Subsidence Data for the Bryan Mound Site, Texas

Bauer, Stephen J.

The elevation change data measured at the Bryan Mound Strategic Petroleum Reserve (SPR) site over the last 16+ years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Bryan Mound is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

More Details

Aluminum Honeycomb Characteristics in Dynamic Crush Environments

Bateman, Vesta I.

Fifteen aluminum honeycomb cubes (3 in.) have been crushed in the Mechanical Shock Laboratory's drop table testing machines. This report summarizes shock experiments with honeycomb densities of 22.1 pcf and 38.0 pcf and with crush weights of 45 lb, 168 lb, and 268 lb. The honeycomb samples were crushed in all three orientations, W, L, and T. Most of the experiments were conducted at an impact velocity of {approx}40 fps, but higher velocities of up to 90 fps were used for selected experiments. Where possible, multiple experiments were conducted for a specific orientation and density of the honeycomb samples. All results are for Hexcel honeycomb except for one experiment with Alcore honeycomb and have been evaluated for validity. This report contains the raw acceleration data measured on the top of the drop table carriage, pictures of the crushed samples, and normalized force-displacement curves for all fifteen experiments. These data are not strictly valid for material characteristics in L and T orientations because the cross-sectional area of the honeycomb changed (split) during the crush. However, these are the best data available at this time. These dynamic crush data do suggest a significant increase in crush strength to 8000 psi ({approximately} 25-30% increase) over quasi-static values of {approximately}6000 psi for the 38.0 pcf Hexcel Honeycomb in the T-orientation. An uncertainty analysis is included and estimates the error in these data.

More Details

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

Clark, Nancy H.

The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

More Details

Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

Beauheim, Richard L.

This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

More Details

Assessment of Solder Interconnect Integrity in Dismantled Electronic Components from N57 and B61 Tube-Type Radars

Vianco, Paul T.

Aging analyses were performed on solder joints from two radar units: (1) a laboratory, N57 tube-type radar unit and (2) a field-returned, B61-0, tube-type radar unit. The cumulative temperature environments experienced by the units during aging were calculated from the intermetallic compound layer thickness and the mean Pb-rich phase particle size metrics for solder joints in the units, assuming an aging time of 35 years for both radars. Baseline aging metrics were obtained from a laboratory test vehicle assembled at AS/FM and T; the aging kinetics of both metrics were calculated from isothermal aging experiments. The N57 radar unit interconnect board solder joints exhibited very little aging. The eyelet solder joints did show cracking that most likely occurred at the time of assembly. The eyelet, SA1126 connector solder joints, showed some delamination between the Cu pad and underlying laminate. The B61 field-returned radar solder joints showed a nominal degree of aging. Cracking of the eyelet solder joints was observed. The Pb-rich phase particle measurements indicated additional aging of the interconnects as a result of residual stresses. Cracking of the terminal pole connector, pin-to-pin solder joint was observed; but it was not believed to jeopardize the electrical functionality of the interconnect. Extending the stockpile lifetime of the B61 tube-type radar by an additional 20 years would not be impacted by the reliability of the solder joints with respect to further growth of the intermetallic compound layer. Additional coarsening of the Pb-rich phase will increase the joints' sensitivity to thermomechanical fatigue.

More Details

Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville, Maryland

Whitehead, Donnie W.

This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the US Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at US nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations.

More Details

Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

Roth, Thomas; Reil, Kenneth O.

For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

More Details

Monte Carlo Simulation of Ferroelectric Domain Structure and Applied Field Response in Two Dimensions

Physical Review B

Tikare, V.; Tuttle, B.A.

A 2-D, lattice-Monte Carlo approach was developed to simulate ferroelectric domain structure. The model currently utilizes a Hamiltonian for the total energy based only upon electrostatic terms involving dipole-dipole interactions, local polarization gradients and the influence of applied electric fields. The impact of boundary conditions on the domain configurations obtained was also examined. In general, the model exhibits domain structure characteristics consistent with those observed in a tetragonally distorted ferroelectric. The model was also extended to enable the simulation of ferroelectric hysteresis behavior. Simulated hysteresis loops were found to be very similar in appearance to those observed experimentally in actual materials. This qualitative agreement between the simulated hysteresis loop characteristics and real ferroelectric behavior was also confirmed in simulations run over a range of simulation temperatures and applied field frequencies.

More Details

Novel SiGe Coherent Island Coarsening: Ostwald Ripening, Elastic Interactions, and Coalescence

Applied Physics Letters

Floro, Jerrold A.

Real-time measurements of island coarsening during SiGe/Si (001) deposition reveal unusual kinetics. In particular, the mean island volume increases superlinearly with time, while the areal density of islands decreases at a faster-than-linear rate. Neither observation is consistent with standard considerations of Ostvvald ripening. We attribute our observed kinetics to the effect of elastic interactions in the densely growing island array. Island coalescence likely plays an important role as well.

More Details

Plasma Damage in p-GaN

Journal of Electronic Materials

Shul, Randy J.

The effect of Inductively Coupled Plasma H{sub 2} or Ar discharges on the breakdown voltage of p-GaN diodes was measured over a range of ion energies and fluxes. The main effect of plasma exposure is a decrease in net acceptor concentration to depths of 400-550{angstrom}. At high ion fluxes or energies there can be type conversion of the initially p-GaN surface. Post etch annealing at 900 C restores the initial conductivity.

More Details

Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

Galambos, Paul C.

The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

More Details

Conductor Energy Losses at 10 MA/cm on Z

Spielman, Rick

Very high current generators are being developed to drive compact loads leading to conductors carrying very high current densities. Losses in conductors include resistive, magnetic field diffusion, pdV work, and material motion contributions. We have designed and executed experiments on Sandia's 100-ns rise time, 20- MA Z accelerator to quantify those losses at current densities reaching 10 MA/cm. In these experiments we delivered nearly 20 MA to both high-current density and low-current density short circuit loads. We used B-dot probes and VISAR techniques to measure the magnetic field near the load. A reduction in the delivered current of ~ 15% over the 20-MA peak current prediction made without resistive losses was observed. Comparisons of these data with radiation magneto-hydrodynamics codes (RMHD) will be presented. Implications on the efficiency of next generation pulsed power drivers will be discussed.

More Details

Operation of a Five-Stage 40,000-CM(2)-Area Insulator Stack at 158 KV/CM

Stygar, William A.

We have demonstrated successful operation of a 3.35- m-diameter insulator stack at 158 kV/cm on five consecutive Z-accelerator shots. The stack consisted of five +45°-profile 5.715-cm-thick cross-linked-polystyrene (Rexolite- 1422) insulator rings, and four anodized- aluminum grading rings shaped to reduce the field at cathode triple junctions. The width of the voltage pulse at 89% of peak was 32 ns. We compare this result to a new empirical flashover relation developed from previous small-insulator experiments conducted with flat unanodized electrodes. The relation predicts a 50% flashover probability for a Rexolite insulator during an applied voltage pulse when Emaxe-0.27/d(teffC)1/10 = 224, where Emax is the peak mean electric field (kV/cm), d is the insulator thickness (cm), teff is the effective pulse width (ps), and C is the insulator circumference (cm). We find the Z stack can be operated at a stress at least 19% higher than predicted. This result, and previous experiments conducted by Vogtlin, suggest anodized electrodes with geometries that reduce the field at both anode and cathode triple junctions would improve the flashover strength of +45° insulators.

More Details

"Z" Facility Dielectric Oil Clean-Up

Alessandri, Daniel; Bloomquist, Doug; Donovan, Guy; Feltz, Greg; Grelle, Nibby; Guthrie, Doug; Harris, Mark; Horry, Mike; Lockas, Mike; Potter, Jimmy; Pritchard, Chuck; Steedly, Jim

In August of 1998 the Z facility leaked approximately 150 gallons of deionized water into the dielectric oil of the Energy Storage Section (ESS). After processing the oil to remove existing particulate and free water the dielectric breakdown strength increased from the mid 20kV range to values in excess of 40 kV. 40 kV is above historical operating levels of about 35 kV. This, however, was not enough to allow 90 kV charging of the Marx Generators in the ESS. Further analysis of the oil showed dissolved water at a saturated level (70 - 80 ppm) and some residual particulate contamination smaller than 3 microns. The dissolved water and particulate combination was preventing the 90 kV charging of the Marx Generators in the ESS. After consulting with the oil industry it was determined that nitrogen sparging could be used to remove the dissolved water. Further particulate filtering was also conducted. After approximately 20 hours of sparging the water content in the ESS was reduced to 42 ppm which enabled Marx charging to 90 kV.

More Details

Research Opportunities for Fischer-Tropsch Technology

Jackson, Nancy B.

Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment.

More Details

Spatially Interpolated Nonlinear Anodization in Synthetic Aperture Radar Imagery

Optics Letters

Yocky, David A.

Spatially Interpolated Nonlinear Anodization in Synthetic Aperture Original formulation of spatially variant anodization for complex synthetic aperture radar (SAR) imagery oversampled at twice the Nyquist rate (2.OX). Here we report a spatially interpolating, noninteger-oversampled SVA sidelobe. The pixel's apparent IPR location is assessed by comparing its value to the sum of its value plus weighted comparable for exact interpolation. However, exact interpolation implies an ideal sine interpolator3 and large components may not be necessary. Note that P is the summation of IPR diagonal values. The value of a sine IPR on the diagonals is a sine-squared; values much less than cardinal direction (m, n) values. This implies that cardinal direction interpolation requires higher precision than diagonal interpolation. Consequently, we employed a smaller set. The spatially interpolated SVA used an 8-point/4-point sine interpolator described above. Table 1 shows the Table 1 results show a two-times speed-up using the 1.3x oversampled and spatially interpolated SVA over the Figure 1d. Detected results of 1.3x oversampled sine interpolated spatially variant

More Details

A Compact, High-Voltage E-Beam Pulser

Mazarakis, Michael G.

It is well established that pulsed power technology is relatively cheaper than other architectures aiming to produce high-current, high-voltage electron or ion accelerators. The footprints of most pulsed power accelerators are large making them incompatible for applications that require either portability or a large number of similar components for very high power devices (like Z-pinch accelerators). Most of the modern pulsed power accelerators require several stages of pulse conditioning (pulse forming) to convert the multimicrosecond pulse of a Marx generator output to the 50-1 00-ns pulse required for an electron or ion diode or a cell cavity of an inductive voltage adder We propose a new and unique method for constmcting high-current, high-voltage pulsed accelerators. The salient future of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. High currents can be achieved by feeding each core with many capacitors connected in parallel in a circular array. High voltage is obtained by inductively adding many stages in series. Utilizing the presently available capacitors and switches we can build a 300-kA, 7-MV generator with an overall outer diameter (including capacitors and switches) of 1.2 m and length of 6.5 m! In addition our accelerator can be multipulsed with a repetition rate up to the capacitor specifications and no less than 10 Hz. As an example the design of a 3-MeV, 100-kA accelerator is presented and analyzed.

More Details
Results 92026–92050 of 99,299
Results 92026–92050 of 99,299