This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.
The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning, the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging.
Finite elements are routinely used for analysis of real world problems in a wide range of engineering disciplines. The types of problems for which these are used include, but are not limited to, structural engineering, materials science, heat transfer, optics and electromagnetics. While linearity is a good assumption to start with in many problems, reasonable solutions to real-life problems require them to be treated as non-linear. It is, therefore, necessary that the users of finite element codes be aware of the capabilities and limitations of their analysis tools.
As the Sandia National Laboratories' Environmental Restoration (ER) project moves toward closure, the project's experiences--including a number of successes in the public participation arena--suggest it is time for a new, more interactive model for future government-citizen involvement. This model would strive to improve the quality of public interaction with the Department of Energy (DOE) and Sandia, by using subject-specific working groups and aiming for long-term trustful relationships with the community. It would make use of interactive techniques, fewer formal public forums, and a variety of polling and communication technologies to improve information gathering and exchange.
Fracture transmissivity and detailed aperture fields are measured in analog fractures specially designed to evaluate the utility of the Reynolds equation. The authors employ a light transmission technique with well-defined accuracy ({approximately}1% error) to measure aperture fields at high spatial resolution ({approximately}0.015 cm). A Hele-Shaw cell is used to confirm the approach by demonstrating agreement between experimental transmissivity, simulated transmissivity on the measured aperture field, and the parallel plate law. In the two rough-walled analog fractures considered, the discrepancy between the experimental and numerical estimates of fracture transmissivity was sufficiently large ({approximately} 22--47%) to exclude numerical and experimental errors (< 2%)as a source. They conclude that the three-dimensional character of the flow field is important for fully describing fluid flow in the two rough-walled fractures considered, and that the approach of depth averaging inherent in the formulation of the Reynolds equation is inadequate. They also explore the effects of spatial resolution, aperture measurement technique, and alternative definitions for link transmissivities in the finite-difference formulation, including some that contain corrections for tortuosity perpendicular to the mean fracture plane and Stokes flow. Various formulations for link transmissivity are shown to converge at high resolution ({approximately} 1/5 the spatial correlation length) in the smoothly varying fracture. At coarser resolutions, the solution becomes increasingly sensitive to definition of link transmissivity and measurement technique. Aperture measurements that integrate over individual grid blocks were less sensitive to measurement scale and definition of link transmissivity than point sampling techniques.
The authors develop and evaluate a modified invasion percolation (MIP) model for quasi-static immiscible displacement in horizontal fractures. The effects of contact angle, local aperture field geometry, and local in-plane interracial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field. This pressure controls the choice of which site is invaded during the displacement process and hence the growth of phase saturation structure within the fracture. To focus on the influence of local in-plane curvature on phase invasion structure, they formulate a simplified nondimensional pressure equation containing a dimensionless curvature number (C) that weighs the relative importance of in-plane curvature and aperture-induced curvature. Through systematic variation of C, they find in-plane interracial curvature to greatly affect the phase invasion structure. As C is increased from zero, phase invasion fronts transition from highly complicated (IP results) to microscopically smooth. In addition, measurements of fracture phase saturations and entrapped cluster statistics (number, maximum size, structural complication) show differential response between wetting and nonwetting invasion with respect to C that is independent of contact angle hysteresis. Comparison to experimental data available at this time substantiates predicted behavior.
The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.
Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).
One of the legacies of the nuclear weapon and nuclear power cycles has been the generation of large quantities of nuclear waste and fissile materials. As citizens of this planet, it is everyone's responsibility to provide for safe, secure, transparent, disposal of these waste nuclear materials. The Sandia Cooperative Monitoring Center sponsored a Transparency Monitoring Workshop where the use of the Waste Isolation Pilot Plant (WIPP) was identified as a possible transparency demonstration test bed. Three experiments were conceived as jumpstart activities to showcase the effective use of the WIPP infrastructure as a Transparency Demonstration Test Bed. The three experiments were successfully completed and demonstrated at the International Atomic Energy Association sponsored International Conference on Geological Repositories held in Denver Colorado November 1999. The design and coordination of these efforts is the subject of this paper.
Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.
The authors report a measurement of the variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1 and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy. The samples were grown by metal-organic chemical vapor deposition and the photoluminescence measurements were performed a 4K. The authors find that the value of the excitonic linewidth increases as a function of pressure until about 100 kbars after which it tends to saturate. This change in the excitonic linewidth is used to derive the pressure variation of the reduced mass of the exciton using a theoretical formalism which is based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The variation of the excitonic reduced mass thus derived is compared with that recently determined using a first-principles band structure calculation based on local density approximation.
Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.
The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces and their thicknesses increase with increasing deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies < 60 eV and increases for films grown using ion energies > 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of 4-fold to 3-fold coordinated carbon atoms.
The nature and origin of lateral composition modulations in (AlAs){sub m}(InAs){sub n} SPSs grown by MBE on InP substrates have been investigated by XRD, AFM, and TEM. Strong modulations were observed for growth temperatures between {approx} 540 and 560 C. The maximum strength of modulations was found for SPS samples with InAs mole fraction x (=n/(n+m)) close to {approx} 0.50 and when n {approx} m {approx} 2. The modulations were suppressed at both high and low values of x. For x >0.52 (global compression) the modulations were along the <100> directions in the (001) growth plane. For x < 0.52 (global tension) the modulations were along the two <310> directions rotated {approx} {+-} 27{degree} from [110] in the growth plane. The remarkably constant wavelength of the modulations, between {approx} 20--30 nm, and the different modulation directions observed, suggest that the origin of the modulations is due to surface roughening associated with the high misfit between the individual SPS layers and the InP substrate. Highly uniform unidirectional modulations have been grown, by control of the InAs mole fraction and growth on suitably offcut substrates, which show great promise for application in device structures.
In September 1997, following significant public and regulator interaction, Sandia Corporation (Sandia) was granted a Resource Conservation and Recovery Act (RCRA) and Hazardous Solid Waste Amendment (HSWA) permit modification allowing construction and operation of a Correction Action Management Unit (CAMU). The CAMU follows recent regulatory guidance that allows for cost-effective, expedient cleanup of contaminated sites and management of hazardous remediation wastes. The CAMU was designed to store, treat, and provide long-term management for Environmental Restoration (ER) derived wastes. The 154 square meter CAMU site at Sandia National Laboratories, New Mexico (SNL/NM), includes facilities for storing bulk soils and containerized wastes, for treatment of bulk soils, and has a containment cell for long-term disposition of waste. Proposed treatment operations include soil washing and low temperature thermal desorption. The first waste was accepted into the CAMU for temporary storage in January 1999. Construction at the CAMU was completed in March 1999, and baseline monitoring of the containment cell has commenced. At completion of operations the facility will be closed, the waste containment cell will be covered, and long-term post-closure monitoring will begin. Sandia's CAMU is the only such facility within the US Department of Energy (DOE) complex. Implementing this innovative approach to ER waste management has required successful coordination with community representatives, state and federal regulators, the DOE, Sandia corporate management, and contractors. It is expected that cost savings to taxpayers will be significant. The life-cycle CAMU project cost is currently projected to be approximately $12 million.
We have developed a new process for applying a hydrophobic, low adhesion energy coating to microelectromechanical (MEMS) devices. Monolayer films are synthesized from tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor in a low-pressure chemical vapor deposition process at room temperature. Film thickness is self-limiting by virtue of the inability of precursors to stick to the fluorocarbon surface of the film once it has formed. We have measured film densities of {approx}3 molecules nm{sup 2} and film thickness of {approx}1 nm. Films are hydrophobic, with a water contact angle >110{sup o}. We have also incorporated an in-situ downstream microwave plasma cleaning process, which provides a clean, reproducible oxide surface prior to film deposition. Adhesion tests on coated and uncoated MEMS test structures demonstrate superior performance of the FOTS coatings. Cleaned, uncoated cantilever beam structures exhibit high adhesion energies in a high humidity environment. An adhesion energy of 100 mJ m{sup -2} is observed after exposure to >90% relative humidity. Fluoroalkylsilane coated beams exhibit negligible adhesion at low humidity and {<=} 20 {micro}J m{sup -2} adhesion energy at >90% relative humidity. No obvious film degradation was observed for films exposed to >90% relative humidity at room temperature for >24 hr.
Molecular homogeneity frequently plays a decisive role in the effective application of organically modified silicate copolymers. However, methods of directly characterizing copolymerization extent in siloxanes generated from mixed alkoxysilanes are not always available or convenient. The authors present an alternative tool for determining kinetic parameters for models of alkoxysilane hydrolytic copolycondensation. Rather than restricting attention to single step batch reactors, they use a semibatch reactor with varying time of injection of one component. They describe the fitting method and show that all necessary kinetic parameters can be determined from a series of ordinary {sup 29}Si NMR data in a straightforward case study: copolymerization of dimethyldiethoxy silane and trimethylethoxysilane. Under conditions providing no direct {sup 29}Si NMR signature of copolymerization, they find kinetic trends consistent with those previously reported. As further validation, the results of a new series of experiments (varying the ratio of mono-functional to difunctional monomer) are predicted by the semibatch copolymerization model and measured parameters. Based on these results, they are able to calculate the molecular homogeneity in the copolymer products investigated. Even for this relatively simple system, the optimal injection time is a complex function of residence time, but early injection of the faster-condensing monomer gives the best homogeneity at long residence times.
A preliminary set of requirements for a robotic rover mission to the lunar polar region are described and assessed. Tasks to be performed by the rover include core drill sample acquisition, mineral and volatile soil content assay, and significant wide area traversals. Assessment of the postulated requirements is performed using first order estimates of energy, power, and communications throughput issues. Two potential rover system configurations are considered, a smaller rover envisioned as part of a group of multiple rovers, and a larger single rover envisioned along more traditional planetary surface rover concept lines.
Robocasting is a new freeform fabrication technique for dense ceramics. It uses robotics to control deposition of ceramic slurries through an orifice. The optimization of concentrated aqueous Si{sub 3}N{sub 4} slurry properties to achieve high green density robocast bodies and subsequent high sintered densities was investigated. The effects of pH, electrolyte, additives and solids loading on the dispersion and rheological properties of Si{sub 3}N{sub 4} slurries were determined. The mechanical behavior of sintered robocast bars was determined and compared to conventionally produced silicon nitride ceramics.
This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data.
The goal of this document is to estimate the potential impact of proposed new Diagnostics-While-Drilling technology on the cost of electricity (COE) produced with geothermal energy. A cost model that predicts the COE was developed and exercised over the range of conditions found for geothermal plants in flashed-steam, binary, and enhanced-reservoir (e.g., Hot Dry Rock) applications. The calculations were repeated assuming that DWD technology is available to reduce well costs and improve well productivity. The results indicate that DWD technology would reduce the geothermal COE by 2--31%, depending on well depth, well productivity, and the type of geothermal reservoir. For instance, for a typical 50-MW, flashed-steam geothermal power plant employing 3-MW wells, 6,000-ft deep, the model predicts an electricity cost of 4.9 cents/kwh. With the DWD technology envisioned, the electricity cost could be reduced by nearly 20%, to less than 4 cents/kwh. Such a reduction in the cost of electricity would give geothermal power a competitive edge over other types of power at many locations across the US and around the world. It is thus believed that DWD technology could significantly expand the role of geothermal energy in providing efficient, environment-friendly electric generating capacity.
In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.
A pressure-induced crossover from normal Ferroelectric-to-Relaxer behavior has been observed in single crystal [Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.905}(PbTiO{sub 3}){sub 0.0095}, or PZN - 9.5% PT. Analogy with similar observations for other perovskites indicates that this crossover is a general feature of compositionally-disordered soft mode ferroelectrics. The Pressure-Temperature phase diagram has been also determined.
The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and for a binary sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the other half. Using systems much larger than previous work, the authors determine a much more precise value for the percolation thresholds and correlation length exponent. The values for the percolation thresholds are shown to be significantly different, in contrast with previous, less precise works that speculated that the threshold might be universal with respect to sphere size distribution.
Pressure studies have provided new insights into the physics of compositionally-disordered ABO{sub 3} oxide relaxors. Specifically, results will be presented and discussed on a pressure-induced ferroelectric-to-relaxer crossover phenomenon, the continuous evolution of the energetic and dynamics of the relaxation process, and the interplay between pressure and electric field in determining the dielectric response.