The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem.
Ultra-thin oxynitride films were grown on Si by direct rapid thermal processing (RTP) oxynitridation in NO/O{sub 2} ambients with NO concentrations from 5% to 50%. During oxynitridation, nitrogen accumulated at the Si/dielectric interface and the average concentration of in N through the resulting films ranged from 0.3 to 3.0 atomic percent. The average concentration of N in the films increased with increasing NO in the ambient gas, but decreased with longer RTP times. The maximum N concentration remained relatively constant for all RTP times and a given NO/O{sub 2} ambient. Re-oxidation following oxynitridation altered L the N profile and improved the electrical characteristics, with an optimal NO/O{sub 2} mixture in the range of 10% to 25% NO. Re-oxidation by RTP improves the electrical characteristics with respect to the films that were not re-oxidized and produces only slight changes in the N distribution or maximum concentration. The electrical results also indicate that oxynitride films are superior to comparably grown oxide films.
Electrical test structures of the type known as cross-bridge resistors have been patterned in (100) epitaxial silicon material that was grown on Bonded and Etched-Back Silicon-on-Insulator (BESOI) substrates. The CDs (Critical Dimensions) of a selection of their reference segments have been measured electrically, by SEM (Scanning-Electron Microscopy) cross-section imaging, and by lattice-plane counting. The lattice-plane counting is performed on phase-contrast images made by High-Resolution Transmission-Electron Microscopy (HRTEM). The reference-segment features were aligned with <110> directions in the BESOI surface material. They were defined by a silicon micromachining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} to the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. The SEM, HRTEM, and electrical CD (ECD) linewidth measurements that are made on BESOI features of various drawn dimensions on the same substrate is being investigated to determine the feasibility of a CD traceability path that combines the low cost, robustness, and repeatability of the ECD technique and the absolute measurement of the HRTEM lattice-plane counting technique. Other novel aspects of the (100) SOI implementation that are reported here are the ECD test-structure architecture and the making of HRTEM lattice-plane counts from both cross-sectional, as well as top-down, imaging of the reference features. This paper describes the design details and the fabrication of the cross-bridge resistor test structure. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors reference segments, as a prelude to making them available for dimensional reference applications.
This paper describes the fabrication and measurement of the linewidths of the reference segments of cross-bridge resistors patterned in (100) Bonded and Etched Back Silicon-on-Insulator (BESOI) material. The critical dimensions (CD) of the reference segments of a selection of the cross-bridge resistor test structures were measured both electrically and by Scanning-Electron Microscopy (SEM) cross-section imaging. The reference-segment features were aligned with <110> directions in the BESOI surface material and had drawn linewidths ranging from 0.35 to 3.0 {micro}m. They were defined by a silicon micro-machining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} to the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. For example, the non-orthogonal intersection of the sidewalls and top-surface planes of the reference-segment features may alleviate difficulties encountered with atomic-force microscope measurements. In such applications it has been reported that it may be difficult to maintain probe-tip control at the sharp 90{degree} outside corner of the sidewalls and the upper surface. A second application is refining to-down image-processing algorithms and checking instrument performance. Novel aspects of the (100) SOI implementation that are reported here include the cross-bridge resistor test-structure architecture and details of its fabrication. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors' reference segments, as a prelude to developing them for dimensional reference applications. This is believed to be the first report of electrical CD measurements made on test structures of the cross-bridge resistor type that have been patterned in (100) SOI material. The electrical CD results are compared with cross-section SEM measurements made on the same features.
Severe plastic deformation in an eutectic tin-lead alloy is studied by imposing fast bending at room temperature, in an attempt to examine the microstructural response in the absence of thermally activated diffusion processes. A change in microstructure due to this purely mechanically imposed load is observed: the tin-rich matrix phase appears to be extruded out of the narrow region between neighboring layers of the lead-rich phase and alterations in the colony structure occur. A micromechanism is proposed to rationalize the experimental observations.
Finding a q{sup th} root in GF(p), where p and q are prunes, q is large and q{sup 2} divides (p{minus}1) is a difficult problem equivalent to the discrete logarithm problem using an element of order q as the base. This paper describes an authenticated key exchange algorithm utilizing this hard problem.
Several concepts (and assumptions) from the literature for porous metals and ceramics have been synthesized into a consistent model that predicts an admissibility limit on a material's porous yield surface. To ensure positive plastic work, the rate at which a yield surface can collapse as pores grow in tension must be constrained.
A co-simulation tool based on finite element principles has been developed to solve coupled electrostatic-structural problems. An automated mesh morphing algorithm has been employed to update the field mesh after structural deformation. The co-simulation tool has been successfully applied to the hysteric behavior of a MEMS switch.
Nanotechnology is based on the ability to create and utilize materials, devices and systems through control of the matter at the nanometer scale. If successful, nanotechnology is expected to lead to broad new technological developments. The efficiency of energy conversion can be increased through the use of nanostructured materials with enhanced magnetic, light emission or wear resistant properties. Energy generation using nanostructured photovoltaics or nanocluster driven photocatalysis could fundamentally change the economic viability of renewable energy sources. In addition, the ability to imitate molecular processes found in living organisms may be key to developing highly sensitive and discriminating chemical and biological sensors. Such sensors could greatly expand the range of medical home testing as well as provide new technologies to counter the spread of chemical and biological weapons. Even the production of chemicals and materials could be revolutionized through the development of molecular reactors that can promote low energy chemical pathways for materials synthesis. Although nanotechnologies hold great promise, significant scientific challenges must be addressed before they can convert that promise into a reality. A key challenge in nanoscience is to understand how nano-scale tailoring of materials can lead to novel and enhanced functions. The authors' laboratory, for example, is currently making broad contributions in this area by synthesizing and exploring nanomaterials ranging from layered structures for electronics/photonics to novel nanocrystalline catalysts. They are even adapting functions from biological molecules to synthesize new forms of nanostructured materials.
A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.
Energy production, deformation, and fluid transport in reservoirs are linked closely. Recent field, laboratory, and theoretical studies suggest that, under certain stress conditions, compaction of porous rocks may be accommodated by narrow zones of localized compressive deformation oriented perpendicular to the maximum compressive stress. Triaxial compression experiments were performed on Castlegate, an analogue reservoir sandstone, that included acoustic emission detection and location. Initially, acoustic emissions were focused in horizontal bands that initiated at the sample ends (perpendicular to the maximum compressive stress), but with continued loading progressed axially towards the center. This paper describes microscopy studies that were performed to elucidate the micromechanics of compaction during the experiments. The microscopy revealed that compaction of this weakly-cemented sandstone proceeded in two phases: an initial stage of porosity decrease accomplished by breakage of grain contacts and grain rotation, and a second stage of further reduction accommodated by intense grain breakage and rotation.
The Nuclear Material Focus Area (NMFA) is responsible for providing comprehensive needs identification, integration of technology research and development activities, and technology deployment for stabilization, packaging, and interim storage of surplus nuclear materials within the DOE complex. The NMFA was chartered in April 1999 by the Office of Science and Technology (OST), an organizational component of the US Department of Energy's (DOE) Office of Environmental Management (EM). OST manages a national program to conduct basic and applied research, and technology development, demonstration, and deployment assistance that is essential to completing a timely and cost-effective cleanup of the DOE nuclear weapons complex. DOE/EM provides environmental research results, as well as cleanup technologies and systems, to meet high-priority end-user needs, reduce EM's major cost centers and technological risks, and accelerate technology deployments. The NMFA represents the segment of EM that focuses on technological solutions for re-using, transforming, and disposing excess nuclear materials and is jointly managed by the DOE Albuquerque Operations Office and the DOE Idaho Operations Office.
The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The paper uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.
SEU is studied in SOI transistors and circuits with various body tie structures. The importance of impact ionization effects, including single-event snapback, is explored. Implications for hardness assurance testing of SOI integrated circuits are discussed.
The authors are particularly interested in the work of adhesion measurements as a means to facilitate the understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. Of the several issues under investigation, one is the effect of organic contamination on the adhesive strength for several types of polymer/metal interface combinations. The specific question that the authors are trying to address is at what level of contamination does adhesive strength decrease. The use of contact mechanics, the JKR method, is a good approach for studying this question. Another approach being studied is the use of interracial fracture mechanics. The model contaminant is hexadecane--non-polar, medium molecular weight hydrocarbon fluid. They choose hexadecane because it replicates typical machining fluids, is nonreactive with Al surfaces, and should not dissolve readily into the adhesive systems of interest. The application of a uniform, controllable and reproducible hexadecane layer on Al surfaces has proven to be difficult. A primary concern is whether studies of model systems can be extended to systems of technological interest. The JKR theory is a continuum mechanics model of contact between two solid spheres that was developed by Johnson, Kendall and Roberts. The JKR theory is an extension of Hertzian contact theory and attributes the additional increase in the contact area between a soft elastomeric hemisphere to adhesive forces between the two surfaces. The JKR theory allows a direct estimate of the surface free energy of interface as well as the work of adhesion (Wa) between solids. Early studies performed in this laboratory involved the determination of Wa between silicone (PDMS) and Al surfaces in order to establish the potential adhesive failure mechanisms. However, the JKR studies using commercial based PDMS [poly(dimethylsiloxane)] was fraught with difficulty that were attributed to the additives used in commercial PDMS systems. The authors could not discriminate hydrogen-bonding effects between Al{sub 2}O{sub 3} and hydroxyl groups in the PDMS, and other possible bonding mechanisms. A model PDMS elastomer and polymer treatments were developed for studying solid surfaces by measuring the degree of self-adhesion hysteresis as indicator of surface properties. The goal of this work is to measure the adhesion between PDMS/Al surfaces -- contaminated and two cleaning techniques. A custom-made JKR apparatus is used to determine the amount of hysteresis and Wa.
Much progress has been made through these years to achieve automatic hexahedral mesh generation. While general meshing algorithms that can take on general geometry are not there yet; many well-proven automatic meshing algorithms now work on certain classes of geometry. This paper presents a feature based volume decomposition approach for automatic Hexahedral Mesh generation. In this approach, feature recognition techniques are introduced to determine decomposition features from a CAD model. The features are then decomposed and mapped with appropriate automatic meshing algorithms suitable for the correspondent geometry. Thus a formerly unmeshable CAD model may become meshable. The procedure of feature decomposition is recursive: sub-models are further decomposed until either they are matched with appropriate meshing algorithms or no more decomposition features are detected. The feature recognition methods employed are convexity based and use topology and geometry information, which is generally available in BREP solid models. The operations of volume decomposition are also detailed in the paper. The final section, the capability of the feature decomposer is demonstrated over some complicated manufactured parts.
At low mean stresses, porous geomaterials fail by shear localization, and at higher mean stresses, they undergo strain-hardening behavior. Cap plasticity models attempt to model this behavior using a pressure-dependent shear yield and/or shear limit-state envelope with a hardening or hardening/softening elliptical end cap to define pore collapse. While these traditional models describe compactive yield and ultimate shear failure, difficulties arise when the behavior involves a transition from compactive to dilatant deformation that occurs before the shear failure or limit-state shear stress is reached. In this work, a continuous surface cap plasticity model is used to predict compactive and dilatant pre-failure deformation. During loading the stress point can pass freely through the critical state point separating compactive from dilatant deformation. The predicted volumetric strain goes from compactive to dilatant without the use of a non-associated flow rule. The new model is stable in that Drucker's stability postulates are satisfied. The study has applications to several geosystems of current engineering interest (oil and gas reservoirs, nuclear waste repositories, buried targets, and depleted reservoirs for possible use for subsurface sequestration of greenhouse gases).
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
In this work, a method is proposed for modifying the standard master-slave stiffness matrix so that linear consistency across the interface of the master and slave meshes is achieved. The existence of such a local stiffness modification is implied by the work of [Dohrmann, et al, to appear]. The present work aims at achieving the same linear consistency through a different method of stiffness modification that is based on simply ensuring zero residual force at the interior interface nodes for all non-zero-stress linear displacement fields and zero residual force at all interface nodes for all rigid-body linear displacement fields. These zero residuals ensure that the local stiffness modification results in an interface that passes the patch test. Numerical examples herein demonstrate that the maximum stress error at the interface goes to zero with the proposed method while it does not for the standard master-slave method.
Large differences in charge buildup in SOI buried oxides can result between x-ray and Co-60 irradiations. The effects of bias configuration and substrate type on charge buildup and hardness assurance issues are explored.
Thermal-stress effects are shown to have a significant impact on the enhanced low-dose-rate sensitivity of linear bipolar circuits. Implications of these results on hardness assurance testing and mechanisms are discussed.
The authors report data on GaAsSb single quantum well lasers grown on GaAs substrates. Room temperature pulsed emission at 1.275 {micro}m in a 1,250 {micro}m-long device has been observed. Minimum threshold current densities of 535 A/cm{sup 2} were measured in 2000 {micro}m long lasers. The authors also measured internal losses of 2--5 cm{sup {minus}1}, internal quantum efficiencies of 30-38% and characteristic temperature T{sub 0} of 67--77 C. From these parameters a gain constant G{sub 0} of 1,660 cm{sup {minus}1} and a transparency current density J{sub tr} of 134 A/cm{sup 2} were calculated. The results indicate the potential for fabricating 1.3 {micro}m VCSELs from these materials.
The microrheology of dry soap foams subjected to large, quasistatic, simple shearing deformations is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by calculating foam structures that minimize total surface area at each value of strain. The minimal surfaces are computed with the Surface Evolver program developed by Brakke. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3} where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new foam topology associated with each stable solution branch results from a cascade of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization.