Publications

Results 90701–90725 of 99,299

Search results

Jump to search filters

SEMI Modeling and Simulation Roadmap

MST News

Hermina, Wahid L.

With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.

More Details

Steady-state properties of lock-on current filaments in GaAs

IEEE Transactions on Plasma Science

Hjalmarson, Harold P.

Collective impact ionization has been used to explain lock-on in semi-insulating GaAs under high-voltage bias. We have used this theory to study some of the steady-state properties of lock-on current filaments. In steady state, the heat gained from the field is exactly compensated by the cooling due to phonon scattering. In the simplest approximation, the carrier distribution approaches a quasi-equilibrium Maxwell-Boltzmann distribution. In this report, we examine the validity of this approximation. We find that this approximation leads to a filament carrier density that is much lower than the high density needed to achieve a quasi-equilibrium distribution. Further work on this subject is in progress.

More Details

Characterization of Sidewall and Planar Surfaces of Electroformed LIGA Parts

Prasad, Somuri V.; Hall, Aaron; Dugger, Michael T.

The nature of surfaces and the way they interact with each other during sliding contact can have a direct bearing on the performance of a microelectromechanical (MEMS) device. Therefore, a study was undertaken to characterize the surfaces of LIGA fabricated Ni and Cu components. Sidewall and planar surfaces were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface roughness was quantified using the AFM. Post-processing (e.g. lapping, removal of polymer film) can profoundly influence the morphology of LIGA components. Edge rounding and smearing of ductile materials during lapping can result in undesirable sidewall morphologies. By judicious selection of AFM scan sizes, the native roughness ({approximately}10 nm RMS) can be distinguished from that arising due to post processing, e.g. scratches, debris, polymer films. While certain processing effects on morphology such as those due to lapping or release etch can be controlled, the true side wall morphology appears to be governed by the morphology of the polymer mold or by the electroforming process itself, and may be much less amenable to modification.

More Details

RIBE Flux vs. Position Monitor

Hamilton, Thomas W.

Recent work at SNL has demonstrated unique capabilities to experimentally measure a variety of ion and neutral particle parameters inside surface features being etched, including ion energy, angular distributions, ion and neutral species measurements. This report details the construction of one recent laboratory tool designed to measure ion beam uniformity over the wafer surface in a reactive ion beam etch system, (RIBE). This information is critical to the development of accurate plasma processing computer models and simulation methods, and is essential for reducing the cost of introducing new processing technologies.

More Details

Approximate Public Key Authentication with Information Hiding

Thomas, Edward V.; Draelos, Timothy J.

This paper describes a solution for the problem of authenticating the shapes of statistically variant gamma spectra while simultaneously concealing the shapes and magnitudes of the sensitive spectra. The shape of a spectrum is given by the relative magnitudes and positions of the individual spectral elements. Class-specific linear orthonormal transformations of the measured spectra are used to produce output that meet both the authentication and concealment requirements. For purposes of concealment, the n-dimensional gamma spectra are transformed into n-dimensional output spectra that are effectively indistinguishable from Gaussian white noise (independent of the class). In addition, the proposed transformations are such that statistical authentication metrics computed on the transformed spectra are identical to those computed on the original spectra.

More Details

Equation of State Measurements of Materials Using a Three-Stage Gun to Impact Velocities of 11km/s

Reinhart, William D.; Chhabildas, L.C.; Carroll, Daniel E.

Understanding high pressure behavior of homogeneous as well as heterogeneous materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. At very high impact velocities, material properties will be subjugated to phase-changes, such as melting and vaporization. These phase states cannot be obtained through conventional gun technology. These processes need to be represented accurately in hydrodynamic codes to allow credible computational analysis of impact events resulting from hypervelocity impact. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 km/s. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology.

More Details

Development of a One-Equation Transition/Turbulence Model

AIAA Journal

Roy, Christopher J.; Blottner, Frederick G.

This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircraft, Vol. 35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittence function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the spatial accuracy of selected predictions is analyzed.

More Details
Results 90701–90725 of 99,299
Results 90701–90725 of 99,299