Publications

Results 1–25 of 32

Search results

Jump to search filters

System Integration for Grid-scale Hybrid Battery Technologies

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Dutta, Oindrilla; Mueller, Jacob M.; Wauneka, Robert W.; De Angelis, Valerio D.

In this work, a modular and open-source platform has been developed for integrating hybrid battery energy storage systems that are intended for grid applications. Alongside integration, this platform will facilitate testing and optimal operation of hybrid storage technologies. Here, a hardware testbed and a control software have been designed, where the former comprises commercial Lithium-iron-phosphate (LiFePO4) and Lead Acid (Pb - acid) cells, custom built Dual Active Bridge (DAB) DC-DC converters, and a commercial DC-AC conversion system. In this testbed the batteries have an operating voltage range of 11-15V, the DC-AC conversion stage has a DC link voltage of 24V, and it connects to a 208V3-φ grid. The hardware testbed can be scaled up to higher voltages. The control software is developed in Python, and the firmware for all the hardware components is developed in C. This software implements hybrid charge/discharge protocols that are suitable for each battery technology for preventing cell degradation, and perform uninter-rupted quality checks on selected battery packs. The developed platform provides flexibility, modularity, safety and economic benefits to utility-scale storage integration.

More Details

Efficient Reformulation of Linear and Nonlinear Solid-Phase Diffusion in Lithium-ion Battery Models using Symmetric Polynomials: Mass Conservation and Computational Efficiency

Journal of the Electrochemical Society

Thiagarajan, Raghav S.; Subramaniam, Akshay; Kolluri, Suryanarayana; Garrick, Taylor R.; Preger, Yuliya P.; De Angelis, Valerio D.; Lim, Jin H.; Subramanian, Venkat R.

Lithium-ion batteries are typically modeled using porous electrode theory coupled with various transport and reaction mechanisms, along with suitable discretization or approximations for the solid-phase diffusion equation. The solid-phase diffusion equation represents the main computational burden for typical pseudo-2-dimensional (p2D) models since these equations in the pseudo r-dimension must be solved at each point in the computational grid. This substantially increases the complexity of the model as well as the computational time. Traditional approaches towards simplifying solid-phase diffusion possess certain significant limitations, especially in modeling emerging electrode materials which involve phase changes and variable diffusivities. A computationally efficient representation for solid-phase diffusion is discussed in this paper based on symmetric polynomials using Orthogonal Collocation and Galerkin formulation (weak form). A systematic approach is provided to increase the accuracy of the approximation (p form in finite element methods) to enable efficient simulation with a minimal number of semi-discretized equations, ensuring mass conservation even for non-linear diffusion problems involving variable diffusivities. These methods are then demonstrated by incorporation into the full p2D model, illustrating their advantages in simulating high C-rates and short-time dynamic operation of Lithium-ion batteries.

More Details

A Tanks-in-Series Approach to Estimate Parameters for Lithium-Ion Battery Models

Journal of the Electrochemical Society

Kolluri, Suryanarayana; Mittal, Prateek; Subramaniam, Akshay; Preger, Yuliya P.; De Angelis, Valerio D.; Ramadesigan, Venkatasailanathan; Subramanian, Venkat R.

Advanced Battery Management Systems (BMS) play a vital role in monitoring, predicting, and controlling the performance of lithium-ion batteries. BMS employing sophisticated electrochemical models can help increase battery cycle life and minimize charging time. However, in order to realize the full potential of electrochemical model-based BMS, it is critical to ensure accurate predictions and proper model parameterization. The accuracy of the predictions of an electrochemical model is dependent on the accuracy of its parameters, the values of which might change with battery cycling and aging. Parameter estimation for an electrochemical model is generally challenging due to the nonlinear nature and computational complexity of the model equations. To this end, this work utilizes the recently proposed Tanks-in-Series model for Li-ion batteries (J.Electrochem. Soc., 167, 013534 (2020)) to perform parameter estimation. The Tanks-in-Series approach allows for substantially faster parameter estimation compared to the original pseudo two-dimensional (p2D) model. The objective of this work is thus to demonstrate the gain in computational efficiency from the Tanks-in-Series approach. A sensitivity analysis of model parameters is also performed to benchmark the fidelity of the Tanks-in-Series model.

More Details

Cyberphysical Security of Grid Battery Energy Storage Systems

IEEE Access

Trevizan, Rodrigo D.; Obert, James O.; De Angelis, Valerio D.; Nguyen, Tu A.; Rao, Vittal S.; Chalamala, Babu C.

This paper presents a literature review on current practices and trends on cyberphysical security of grid-connected battery energy storage systems (BESSs). Energy storage is critical to the operation of Smart Grids powered by intermittent renewable energy resources. To achieve this goal, utility-scale and consumer-scale BESS will have to be fully integrated into power systems operations, providing ancillary services and performing functions to improve grid reliability, balance power and demand, among others. This vision of the future power grid will only become a reality if BESS are able to operate in a coordinated way with other grid entities, thus requiring significant communication capabilities. The pervasive networking infrastructure necessary to fully leverage the potential of storage increases the attack surface for cyberthreats, and the unique characteristics of battery systems pose challenges for cyberphysical security. This paper discusses a number of such threats, their associated attack vectors, detection methods, protective measures, research gaps in the literature and future research trends.

More Details
Results 1–25 of 32
Results 1–25 of 32