Publications

Results 26–50 of 249
Skip to search filters

Monitoring and Repair of Cement-Geomaterial Interfaces in Borehole and Repository Scenarios

Matteo, Edward N.; McMahon, Kevin A.; Camphouse, Russell C.; Dewers, Thomas D.; Jove Colon, Carlos F.; Fuller, Timothy J.; Mohahgheghi, J.M.; Stormont, J.C.; Taha, M.T.; Pyrak-Nolte, L.P.; Wang, C.-F.; Douba, A.D.; Genedy, M.G.; Fernandez, S.G.; Kandil, U.F.; Soliman, E.E.; Starr, J.S.; Stenko, M.S.

The failure of subsurface seals (i.e., wellbores, shaft and drift seals in a deep geologic nuclear waste repository) has important implications for US Energy Security. The performance of these cementitious seals is controlled by a combination of chemical and mechanical forces, which are coupled processes that occur over multiple length scales. The goal of this work is to improve fundamental understanding of cement-geomaterial interfaces and develop tools and methodologies to characterize and predict performance of subsurface seals. This project utilized a combined experimental and modeling approach to better understand failure at cement-geomaterial interfaces. Cutting-edge experimental methods and characterization methods were used to understand evolution of the material properties during chemo-mechanical alteration of cement-geomaterial interfaces. Software tools were developed to model chemo-mechanical coupling and predict the complex interplay between reactive transport and solid mechanics. Novel, fit-for-purpose materials were developed and tested using fundamental understanding of failure processes at cement- geomaterial interfaces. ACKNOWLEDGEMENTS The authors wish to acknowledge the Earth Sciences Research Foundation for their generous support over the last three years. In particular, we thank Erik Webb for his numerous suggestions, comments, feedback, and encouragement over the course of the project. There many who helped bring this project to fruition, including: Dave Borns, Steve Bauer, Pania Newell, Heeho Park, and Doug Blankenship. There are many support personnel who we thank for their valuable contributions to the logistics and business of management side of the project, including: Tracy Woolever, Libby Sanzero, and Nancy Vermillion.

More Details

Experimental Studies of Anisotropy on Borehole Breakouts in Mancos Shale

Journal of Geophysical Research: Solid Earth

Choens, R.C.; Lee, Moo Y.; Ingraham, Mathew D.; Dewers, Thomas D.; Herrick, Courtney G.

Measuring the size and orientation of borehole breakouts is one of the primary methods for determining the orientation and magnitudes of the in situ stresses in the subsurface. To better understand the effects of anisotropy on borehole breakouts, experiments were conducted on Mancos Shale, a finely laminated mudrock. A novel testing configuration was developed to conduct borehole breakout experiments in a standard triaxial vessel and load frame. Samples were prepared at three different orientations and deformed under 6.9 to 20.7 MPa confining pressure. The results show a variation of peak strength and breakout geometry depending on the lamination orientation. Samples deformed parallel to laminations failed at a higher maximum compressive stress than samples deformed perpendicular to laminations, which were stronger than inclined samples. These relationships are quantified by a cosine-based failure envelope. Observed breakout shapes in perpendicular samples are V-shaped and symmetric around the borehole, which advance as a series of fractures of increasing size into the sidewalls. In inclined samples, fractures form along weaker laminations planes and grow in an en echelon pattern towards the axial stress direction. In parallel samples, long fractures grow from the wellbore towards the axial stress direction. The observed geometries highlight potential sources of error in calculating in situ stresses from borehole breakouts.

More Details

Investigation of Accessible Pore Structure Evolution under Pressurization and Adsorption for Coal and Shale Using Small-Angle Neutron Scattering

Energy and Fuels

Liu, Shimin; Zhang, Rui; Karpyn, Zuleima; Yoon, Hongkyu Y.; Dewers, Thomas D.

Pore structure is an important parameter to quantify the reservoir rock adsorption capability and diffusivity, both of which are fundamental reservoir properties to evaluate the gas production and carbon sequestration potential for coalbed methane (CBM) and shale gas reservoirs. In this study, we applied small-angle neutron scattering (SANS) to characterize the total and accessible pore structures for two coal and two shale samples. We carried out in situ SANS measurements to probe the accessible pore structure differences under argon, deuterated methane (CD 4 ), and CO 2 penetrations. The results show that the total porosity ranges between 0.25 and 5.8% for the four samples. Less than 50% of the total pores are accessible to CD 4 for the two coals, while more than 75% of the pores were found to be accessible for the two shales. This result suggests that organic matter pores tend to be disconnected compared to mineral matter pores. Argon pressurization can induce pore contraction because of the mechanical compression of the solid skeleton in both the coal and shale samples. Hydrostatic compression has a higher effect on the nanopores of coal and shale with a higher accessible porosity. Both methane and CO 2 injection can reduce the accessible nanopore volume due to a combination of mechanical compression, sorption-induced matrix swelling, and adsorbed molecule occupation. CO 2 has higher effects on sorption-induced matrix swelling and pore filling compared to methane for both the coal and shale samples. Gas densification and pore filling could occur at higher pressures and smaller pore sizes. In addition, the compression and adsorption could create nanopores in the San Juan coal and Marcellus shale drilled core but could have an opposite effect in the other samples, namely, the processes could damage the nanopores in the Hazleton coal and Marcellus shale outcrop.

More Details

Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

International Journal of Greenhouse Gas Control

Ilgen, A.G.; Aman, M.; Espinoza, D.N.; Rodriguez, Mark A.; Griego, James J.M.; Dewers, Thomas D.; Feldman, Joshua D.; Stewart, T.A.; Choens, R.C.; Wilson, J.

The success of geological carbon storage (GCS) depends on the sealing properties of caprocks, typically mudrocks, and their laminated variety – shales. In this study, we examined mineralogical changes in carbonate-rich Mancos Shale and corresponding changes in micro-mechanical properties following the reaction with carbon dioxide (CO2). Mineralogical changes of Mancos Shale depended on the pressure of CO2 during its exposure to the CO2-brine mixtures for up to 8 weeks. Dedolomitization was observed in the reactors pressurized with 100 psi of CO2, combined with the precipitation of gypsum. In the reactor pressurized with 2500 psi of CO2, the complete dissolution of calcite, partial dissolution of dolomite, and precipitation of magnesite and anhydrite were observed. Localized mechanical weakening was observed only for dolomite-muscovite-illite-rich laminae following whole shale puck alteration at 2500 psi of CO2, and a decrease of up to 50 ± 20% in scratch toughness was observed. The quartz-calcite-rich laminae did not exhibit a measurable difference in scratch toughness before and after reaction in CO2-rich brine. The predicted changes in mineralogy, porosity, density, and hardness of Mancos Shale are limited, according to the geochemical models describing alteration of shale by CO2-rich brine lasting for 5000 years. This study illustrates a coupled and localized chemical-mechanical response of caprock to the injection of CO2.

More Details

Rates of subcritical cracking and long-term rock erosion

Geology

Eppes, M.C.; Hancock, G.S.; Chen, X.; Arey, J.; Dewers, Thomas D.; Huettenmoser, J.; Kiessling, S.; Moser, F.; Tannu, N.; Weiserbs, B.; Whitten, J.

Bedrock fracture is a key element of rock erosion and subsequent surface processes. Here, we test the hypothesis that rock's susceptibility to subcritical cracking, a specific type of fracturing, significantly drives and limits rock erosion. We measured 10Be-derived erosion rates, compressive strength, and crack characteristics on 20 outcrops of different rock units (quartzite, granite, and two metasandstones) in the northern Blue Ridge Mountains of Virginia (USA). We also measured the subcritical cracking index (n), Charles's law velocity constant (A), and fracture toughness (KIC) of samples from four of the same outcrops, representative of each rock type. Erosion rates range from 1.16 ± 0.67 to 32.3 ± 7.8 m/m.y. We find strong correlations- across the four rock units-between average erosion rates and the three subcritical cracking parameters (R2 > 0.85, p < 0.05), but not compressive strength (R2 = 0.6; p > 0.1). We also find a correlative relationship between n and outcrop fracture length (R2 = 0.91; p < 0.05). The latter correlation is consistent with that of published model predictions, further indicating a mechanistic link between subcritical cracking and rock erosion. We infer that subcritical cracking parameters closely tie to erosion rates, because subcritical cracking is the dominant process of mechanical weathering, leading to positive feedbacks relating subcritical cracking rates, crack length, porosity, and water accessibility. These data are the first that directly test and support the hypothesis that subcritical cracking can set the pace of long-term rock erosion.

More Details

CO2 charged brines changed rock strength and stiffness at Crystal Geyser, Utah: Implications for leaking subsurface CO2 storage reservoirs

International Journal of Greenhouse Gas Control

Espinoza, D.N.; Jung, Hojung; Major, Jonathan R.; Sun, Zhuang; Ramos, Matthew J.; Eichhubl, Peter; Balhoff, Matthew T.; Choens, R.C.; Dewers, Thomas D.

CO2 geological storage in saline aquifers results in acidification of resident brine. Chemical reactions between acidified brine and rock minerals lead to dissolution and precipitation of minerals at various time scales. Mineral dissolution and precipitation are often neglected in assessing the mechanical integrity of target storage formations, yet, changes in rock strength and deformational behavior can impact trapping mechanisms. This study shows the impact of exposure to CO2-charged brine on shear strength and stiffness of various outcrop rocks evaluated through triaxial testing. The tested rocks were exposed to CO2-charged brine over geological time at a naturally occurring near-surface seepage along the Little Grand Wash Fault and Salt Wash Grabens, which include the Crystal Geyser site near the town of Green River, Utah. Prior work suggests that this site provides a near-surface structural analog for possible fault-controlled CO2 leakage over time scales that exceed expected injection time scales (10–100 years). Results show mechanical alteration in various aspects: (1) CO2-charged brine alteration at near-surface conditions results in mineral dissolution/precipitation and reduction of shear strength and brittleness of Entrada sandstone and Summerville siltstone samples, and (2) carbonate precipitation in fractured Mancos shale leads to matrix stiffening and fracture mineralization resulting in overall stiffer and likely tighter shale. Additional discrete element simulations coupled with a bonded-particle-model confirm the role of cement bond size alteration as one of the main controls for rock chemo-mechanical alteration in sandstones. The chemo-mechanical alteration path that mimics cement dissolution (under stressed subsurface conditions) results in vertical compaction and lateral stress relaxation. Overall, results show that rock exposure to CO2-charged brine can impart distinct petrophysical and geomechanical changes according to rock lithology and location with respect to major CO2 conduits. While mineral dissolution in the storage rock may result in undesired reservoir strains and changes of stresses, mineral precipitation downstream from a leakage path can help seal potentially induced fractures.

More Details

CO2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

Greenhouse Gases: Science and Technology

Aman, Michael; Espinoza, D.N.; Ilgen, Anastasia G.; Major, Jonathan R.; Eichhubl, Peter; Dewers, Thomas D.

The injection of carbon dioxide (CO2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO2 seepage alters portions of these geologic formations. We conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO2-related chemical-mechanical alteration during long-term CO2 storage. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

More Details

Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

International Journal of Greenhouse Gas Control

Dewers, Thomas D.; Eichhubl, Peter; Ganis, Ben; Gomez, Steven P.; Heath, Jason; Jammoul, Mohamad; Kobos, Peter H.; Liu, Ruijie; Major, Jonathan; Matteo, Edward N.; Newell, Pania; Rinehart, Alex; Sobolik, Steven R.; Stormont, John; Reda Taha, Mahmoud; Wheeler, Mary; White, Deandra

Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. To achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeability (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. An example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO2 trapping.

More Details
Results 26–50 of 249
Results 26–50 of 249