Publications

Results 26–50 of 152

Search results

Jump to search filters

Crystallographic effects on transgranular chloride-induced stress corrosion crack propagation of arc welded austenitic stainless steel

npj Materials Degradation

Qu, Haozheng J.; Tao, Fei; Gu, Nianju; Montoya, Timothy M.; Taylor, Jason M.; Schaller, Rebecca S.; Schindelholz, Eric; Wharry, Janelle P.

The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on >300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors.

More Details

Electron beam surface remelting enhanced corrosion resistance of additively manufactured Ti-6Al-4V as a potential in-situ re-finishing technique

Scientific Reports

Shahsavari, Mohammadali; Imani, Amin; Setavoraphan, Andaman; Schaller, Rebecca S.; Asselin, Edouard

This study explores the effect of surface re-finishing on the corrosion behavior of electron beam manufactured (EBM) Ti-G5 (Ti-6Al-4V), including the novel application of an electron beam surface remelting (EBSR) technique. Specifically, the relationship between material surface roughness and corrosion resistance was examined. Surface roughness was tested in the as-printed (AP), mechanically polished (MP), and EBSR states and compared to wrought (WR) counterparts. Electrochemical measurements were performed in chloride-containing media. It was observed that surface roughness, rather than differences in the underlying microstructure, played a more significant role in the general corrosion resistance in the environment explored here. While both MP and EBSR methods reduced surface roughness and enhanced corrosion resistance, mechanical polishing has many known limitations. The EBSR process explored herein demonstrated positive preliminary results. The surface roughness (Ra) of the EBM-AP material was considerably reduced by 82%. Additionally, the measured corrosion current density in 0.6 M NaCl for the EBSR sample is 0.05 µA cm−2, five times less than the value obtained for the EBM-AP specimen (0.26 µA cm−2).

More Details

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY22 Status Update)

Schaller, Rebecca S.; Knight, A.W.; Katona, Ryan M.; Nation, B.L.; Karasz, Erin K.; Bryan, C.R.

High-level purpose of this work: This report summarizes work carried out by Sandia National Laboratories (SNL) in the fiscal year 2022 (FY22) to evaluate the potential occurrence of stress corrosion cracking (SCC) on spent nuclear fuel (SNF) dry storage canisters. The U.S. currently lacks a repository for permanent disposal of SNF; thus, dry storage systems will be in use for much longer time periods than originally intended. Gap analyses by the US Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), the Nuclear Waste Technical Review Board (NWTRB), and the Electric Power Research Institute (EPRI) have all determined that an improved understanding of the occurrence and risk of canister SCC is critical to demonstrating the safety of long-term dry storage. Should canister penetration by SCC occur, the containment boundary represented by the canister would be breached. A loss of the inert environment (helium) within the canister could occur and intrusion of air and moisture could react with and damage the fuel within the canister. For this reason, the DOE is funding an effort to evaluate the potential occurrence and consequences of dry storage canister SCC and to develop prevention, mitigation, and repair technologies for this degradation mechanism.

More Details

FY2022 Status Report: Cold Spray for Canister SCC Mitigation and Repair

Schaller, Rebecca S.; Karasz, Erin K.; Montoya-X, Timothy; Taylor, Jason M.; Ross, Kenneth

This progress report describes work performed during FY22 at Sandia National Laboratories (SNL) to assess the corrosion performance of cold spray coatings to enable optimization of cold spray for the purposes of mitigation and/or repair of potentially susceptible regions, corrosion, or stress corrosion cracking (SCC) in austenitic stainless steel for spent nuclear fuel (SNF) storage. Of particular concern is SCC, by which a through-wall crack could potentially form in a canister outer wall over time intervals that may be shorter than possible dry storage times. In FY21, initial corrosion explorations of cold spray coating were evaluated and in FY22, an expanded set of cold spray coatings with in-depth analysis of post-exposure accelerated testing was explored. Additionally, relevant atmospheric exposure testing was carried out and initial results are presented herein. The corrosion attack from the accelerated testing and more realistic atmospheric exposures environments were compared to identify potentially deleterious factors for corrosion as well as help to understand the applicability of accelerated testing for cold spray optimization. This initial analysis will help to enable optimization of the corrosion resistance cold spray, one of the more promising coating and repair techniques, for potential application in an SNF environment. Learnings from both are summarized, and implications and future work are presented in this report.

More Details

Corrosion-Resistant Coatings on Spent Nuclear Fuel Canisters to Mitigate and Repair Potential Stress Corrosion Cracking (FY22 Status)

Knight, A.W.; Nation, B.L.; Maguire, Makeila; Schaller, Rebecca S.; Bryan, C.R.

This report summarizes the activities performed by Sandia National Laboratories in FY22 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports in FY20 and FY21 on the same topic. The previous work detailed the specific coating properties desired for application and implementation to spent nuclear fuel canisters (FY20) and identified several potential coatings for evaluation (FY21). In FY22, Sandia National Laboratories, in collaboration with four industry partners through a Memorandum of Understanding, started evaluating the physical, mechanical, and corrosion-resistance properties of 6 different coating systems (11 total coating variants) to develop a baseline understanding of the viability of each coating type for use to prevent, mitigate, and/or repair potential stress corrosion on cracking on spent nuclear fuel canisters. This collaborative R&D program leverages the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of the industry collaborators. The coating systems include organic (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and hybrid systems in conjuncture with a Zn-rich primer. These coatings were applied to stainless steel coupons (the same coupons were supplied to all vendors by SNL for direct comparison) and have undergone several physical, mechanical, and electrochemical tests. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters, and also to identify specific needs for further optimization of coating technologies for their application on spent nuclear fuel canisters. In FY22, Sandia National Laboratories performed baseline testing and atmospheric exposure tests of the coating samples supplied by the vendors in accordance with the scope of work defined in the Memorandum of Understanding. In FY23, Sandia National Laboratories will continue evaluating coating performance with a focus on thermal and radiolytic stability.

More Details
Results 26–50 of 152
Results 26–50 of 152