Publications

Results 51–75 of 145

Search results

Jump to search filters

Corrosion evaluation of Ti–6Al–4V manufactured by electron beam melting in Ringer’s physiological solution: an in vitro study of the passive film

Journal of Applied Electrochemistry

Shahsavari, Mohammadali; Imani, Amin; Schaller, Rebecca S.; Asselin, Edouard

Electrochemical characteristics and semiconducting behavior of additively manufactured electron beam melted (EBM) and wrought (WR) Ti–6Al–4V (Ti-G5) are compared in Ringer’s physiological solution. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) confirmed the α + β structure of the tested materials, with two different microstructure types of “bimodal” and “basket-weave” for WR and EBM, respectively. Potentiodynamic polarization (PDP) revealed that the corrosion current density for EBM (icorr = 0.27 ± 0.06 μA cm−2) is less than the WR (icorr = 0.70 ± 0.05 μA cm−2). Moreover, potentiostatic polarization (PS) that was employed to form the passive layers at three different potentials of 300, 500, and 700 mVAg/AgCl, showed that the passive films on the EBM sample are thinner. This finding was confirmed by electrochemical impedance spectroscopy (EIS). Furthermore, through Mott–Schottky (M–S) analysis, donor densities on WR passive films were found to be ~ 1.5 times larger than EBM. Although PS and EIS confirmed that the passive layer on EBM is thinner, it provides higher corrosion resistance than WR. The passive layer on both samples were found to have n-type characteristics with a duplex structure. Graphical abstract: [Figure not available: see fulltext.]

More Details

Development of Surface Sampling Techniques for the Canister Deposition Field Demonstration (FY22 Update)

Knight, Andrew W.; Schaller, Rebecca S.; Nation, Brendan L.; Durbin, S.G.; Bryan, Charles R.

This report describes the proposed surface sampling techniques and plan for the multi-year Canister Deposition Field Demonstration (CDFD). The CDFD is primarily a dust deposition test that will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters in Advanced Horizontal Storage Modules, with planned exposure testing for up to 10 years at an operating ISFSI site. One canister will be left at ambient condition, unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns for dust analysis will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, measured dust deposition rates and deposited particle sizes will improve parameterization of dust deposition models employed to predict the potential occurrence and timing of stress corrosion cracks on the stainless steel SNF canisters. The size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Previously, a preliminary sampling plan was developed, identifying possible sampling locations on the canister surfaces and sampling intervals; possible sampling methods were also described. Further development of the sampling plan has commenced through three different tasks. First, canister surface roughness, a potentially important parameter for air flow and dust deposition, was characterized at several locations on one of the test canisters. Second, corrosion testing to evaluate the potential lifetime and aging of thermocouple wires, spot welds, and attachments was initiated. Third, hand sampling protocols were developed, and initial testing was carried out. The results of those efforts are presented in this report. The information obtained from the CDFD will be critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking of SNF dry storage canisters.

More Details

Evaluation of Applied Stress on Atmospheric Corrosion and Pitting Characteristics in 304L Stainless Steel

Corrosion

Plumley, John B.; Alexander, Christopher L.; Wu, Xin; Gordon, Scott; Yu, Zhenzhen; Kemp, Nicholas A.; Garzon, Fernando; Schindelholz, Eric J.; Schaller, Rebecca S.

The effects of applied stress, ranging from tensile to compressive, on the atmospheric pitting corrosion behavior of 304L stainless steel (SS304L) were analyzed through accelerated atmospheric laboratory exposures and microelectrochemical cell analysis. After exposing the lateral surface of a SS304L four-point bend specimen to artificial seawater at 50°C and 35% relative humidity for 50 d, pitting characteristics were determined using optical profilometry and scanning electron microscopy. The SS304L microstructure was analyzed using electron backscatter diffraction. Additionally, localized electrochemical measurements were performed on a similar, unexposed, SS304L four-point bend bar to determine the effects of applied stress on corrosion susceptibility. Under the applied loads and the environment tested, the observed pitting characteristics showed no correlation with the applied stress (from 250 MPa to -250 MPa). Pitting depth, surface area, roundness, and distribution were found to be independent of location on the sample or applied stress. The lack of correlation between pitting statistics and applied stress was more likely due to the aggressive exposure environment, with a sea salt loading of 4 g/m2 chloride. The pitting characteristics observed were instead governed by the available cathode current and salt distribution, which are a function of sea salt loading, as well as pre-existing underlying microstructure. In microelectrochemical cell experiments performed in Cl- environments comparable to the atmospheric exposure and in environments containing orders of magnitude lower Cl- concentrations, effects of the applied stress on corrosion susceptibility were only apparent in open-circuit potential in low Cl- concentration solutions. Cl- concentration governed the current density and transpassive dissolution potential.

More Details

Understanding and Predicting Stress Corrosion Cracking of SNF Dry Storage Canisters

Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting

Bryan, Charles R.; Knight, Andrew W.; Nation, Brendan L.; Katona, Ryan M.; Karasz, Erin K.; Montoya, T.J.; Brooks, Dusty M.; Porter, N.W.; Gilkey, Lindsay N.; Taylor, Jason M.; Schaller, Rebecca S.

Abstract not provided.

Results 51–75 of 145
Results 51–75 of 145