Publications

Results 51–75 of 87

Search results

Jump to search filters

Revealing the growth kinetics of atmospheric corrosion pitting in aluminum via in situ microtomography

npj Materials Degradation

Noell, Philip; Melia, Michael A.; Schindelholz, Eric J.

Understanding the mechanistic relationship between the environment, microstructure, and local kinetics of atmospheric corrosion damage remains a central challenge. To address this challenge, this study used laboratory-based X-ray tomography to directly observe attack in-operando over an extended period, enabling insights into the evolving growth kinetics and morphology of individual pits over months of exposure. Damage progression associated with nine pits in a 99.9% pure aluminum wire exposed to chloride salts in humid air was characterized. Most pits grew at a nominally linear rate up until pit death, which occurred within 12–24 h of nucleation. Exceptions to this were observed, with three pits exhibiting bimodal growth kinetics and growing for 40 or more hours. This was explained by secondary droplets that formed near the pits, increasing the cathode area. A corrosion-driven drying mechanism likely contributed to pit death in both cases. Pits first grew into the material followed by lateral expansion.

More Details

Creep Deformation and Dynamic Grain Growth in an Interstitial-Free Steel

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Noell, Philip; Rupp, Ryann E.; Taleff, Eric M.

Dynamic grain growth is demonstrated to be much faster than static grain growth in a body-centered-cubic, interstitial-free steel sheet material at 850∘C. Dynamic grain growth occurs during concurrent plastic deformation at elevated temperature, whereas static grain growth occurs during static annealing. Grain growth during steady-state plastic flow in tension at 850∘C to a true strain of 0.2 at a true-strain rate of 10 - 4 s - 1 doubled grain size, while static annealing for the same time produced no increase in grain size. This is described as dynamic normal grain growth (DNGG) because no abnormally large grains were observed. The recrystallized microstructure of the steel demonstrated a log-normal distribution of grain sizes. DNGG produced bimodal grain size distributions that deviate from the theoretical expectation of a simple shift to larger sizes during normal growth. The bimodal distributions contained a remnant of small grains that were not consumed during grain growth. DNGG produced a crystallographic texture that is unique from both the recrystallized material and that produced by lattice rotation alone. DNGG strengthened the { 111 } ⟨ 110 ⟩ and { 111 } ⟨ 112 ⟩ components of the strong γ-fiber component in the original recrystallization texture. Lattice rotation from tensile deformation, by contrast, strengthened the α-fiber components that intersect the original γ-fiber.

More Details

Mechanical testing of PH13-8Mo H950 Steel for Xue-Wierzbicki Fracture Criterion Determination at 20° C and -40° C

Noell, Philip; Pathare, Priya R.; Casias, Zachary; Huber, Todd; Laing, John R.; Carroll, J.D.

Mechanical testing was conducted to collect the data needed to build a Xue-Wierzbicki (XW) fracture model for PH13-8 Mo H950 stainless steel (PH 13-8 SS). This model is intended for use in structural analysis of this material between room temperature and -40° C. Tests were performed on four different specimen geometries such that a range of stress states were characterized at room temperature and -40° C. Tensile tests on R5 tensile specimens were also performed to assess material anisotropy. Fracture toughness test were also conducted. The fracture toughness of this material at -40° C was 68% of the room-temperature value. Material strength generally increased with decreasing temperature while the opposite trend was observed for ductility. These trends were most pronounced for specimens with the largest stress triaxialities.

More Details

Microstructural modification of additively manufactured metals by electropulsing

Additive Manufacturing

Noell, Philip; Rodelas, Jeffrey; Ghanbari, Zahra; Laursen, Christopher M.

Additive manufacturing (AM) promises rapid development cycles and fabrication of ready-to-use, geometrically-complex parts. The metallic parts produced by AM often contain highly non-equilibrium microstructures, e.g. chemical microsegregation and residual dislocation networks. While such microstructures can enhance some material properties, they are often undesirable. Many AM parts are thus heat-treated after fabrication, a process that significantly slows production. This study investigated if electropulsing, the process of sending high-current-density electrical pulses through a metallic part, could be used to modify the microstructures of AM 316 L stainless steel (SS) and AlSi10Mg parts fabricated by selective laser melting (SLM) more rapidly than thermal annealing. Electropulsing has shown promise as a rapid postprocessing method for materials fabricated using conventional methods, e.g. casting and rolling, but has never been applied to AM materials. For both the materials used in this study, as-fabricated SLM parts contained significant chemical heterogeneity, either chemical microsegregation (316 L SS) or a cellular interdendritic phase (AlSi10Mg). In both cases, annealing times on the order of hours at high homologous temperatures are necessary for homogenization. Using electropulsing, chemical microsegregation was eliminated in 316 L SS samples after 10, 16 ms electrical pulses. In AlSi10Mg parts, electropulsing produced spheroidized Si-rich particles after as few as 15, 16 ms electrical pulses with a corresponding increase in ductility. This study demonstrated that electropulsing can be used to modify the microstructures of AM metals.

More Details

Executive Micro-CT Low-resolution Summary for Catheter Parts [Slides]

Griego, James J.M.; Noell, Philip

Data scans were performed on a Zeiss Xradia 520 Versa operated by departments 1851 (Philip Noell) and 1819 (James Griego). Sample 1, 2, and 3 Catheters were scanned with a 30 um pixel (low-resolution) to get an overall view of the part. (This does not include the entire height of the catheter assembly.) The following slides show the Z, Y, and X slice plane at a specific cross-hair location. We can perform a higher resolution scan down to —0.7 um pixel size including a limited field of view of ~700 um wide. Slide 5 has some requests for the customer for further scan locations. These catheters were provided to us by Simon Dunham of Weill Cornell Medical College.

More Details

Nanoscale conditions for ductile void nucleation in copper: Vacancy condensation and the growth-limited microstructural state

Acta Materialia

Noell, Philip; Sabisch, Julian E.C.; Medlin, Douglas L.; Boyce, Brad L.

Ductile rupture or tearing usually involves structural degradation from the nucleation and growth of voids and their coalescence into cracks. Although some materials contain preexisting pores, the first step in failure is often the formation of voids. Because this step can govern both the failure strain and the fracture mechanism, it is critical to understand the mechanisms of void nucleation and the enabling microstructural configurations which give rise to nucleation. To understand the role of dislocations during void nucleation, the present study presents ex-situ cross-sectional observations of interrupted deformation experiments revealing incipient, subsurface voids in a copper material containing copper oxide inclusions. The local microstructural state was evaluated using electron backscatter diffraction (EBSD), electron channeling contrast (ECC), transmission electron microscopy (TEM), and transmission kikuchi diffraction (TKD). Surprisingly, before substantial growth and coalescence had occurred, the deformation process had resulted in the nucleation of a high density of nanoscale (≈50 nm) voids in the deeply deformed neck region where strains were on the order of 1.5. Such a proliferation of nucleation sites immediately suggests that the rupture process is limited by void growth, not nucleation. With regard to void growth, analysis of more than 20 microscale voids suggests that dislocation boundaries facilitate the growth process. The present observations call into question prior assumptions on the role of dislocation pile-ups and provide new context for the formulation of revised ductile rupture models. While the focus of this study is on damage accumulation in a highly ductile metal containing small, well-dispersed particles, these results are also applicable to understanding void nucleation in engineering alloys.

More Details

Collaborative ductile rupture mechanisms of high-purity copper identified by in situ X-ray computed tomography

Acta Materialia

Croom, Brendan P.; Jin, Helena; Noell, Philip; Boyce, Brad L.; Li, Xiaodong

The competition between ductile rupture mechanisms in high-purity Cu and other metals is sensitive to the material composition and loading conditions, and subtle changes in the metal purity can lead to failure either by void coalescence or Orowan Alternating Slip (OAS). In situ X-ray computed tomography tensile tests on 99.999% purity Cu wires have revealed that the rupture process involves a sequence of damage events including shear localization; growth of micron-sized voids; and coalescence of microvoids into a central cavity prior to the catastrophic enlargement of the coalesced void via OAS. This analysis has shown that failure occurs in a collaborative rather than strictly competitive manner. In particular, strain localization along the shear band enhanced void nucleation and drove the primary coalescence event, and the size of the resulting cavity and consumption of voids ensured a transition to the OAS mechanism rather than continued void coalescence. Additionally, the tomograms identified examples of void coalescence and OAS growth of individual voids at all stages of the failure process, suggesting that the transition between the different mechanisms was sensitive to local damage features, and could be swayed by collaboration with other damage mechanisms. The competition between the different damage mechanisms is discussed in context of the material composition, the local damage history, and collaboration between the mechanisms.

More Details

Suppression of Void Nucleation in High-Purity Aluminum via Dynamic Recrystallization

Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science

Noell, Philip; Sills, Ryan; Boyce, Brad L.

The process of ductile fracture in metals often begins with void nucleation at second-phase particles and inclusions. Previous studies of rupture in high-purity face-centered-cubic metals, primarily aluminum (Al), concluded that second-phase particles are necessary for cavitation. A recent study of tantalum (Ta), a body-centered-cubic metal, demonstrated that voids nucleate readily at deformation-induced dislocation boundaries. These same features form in Al during plastic deformation. This study investigates why void nucleation was not previously observed at dislocation boundaries in Al. Here, we demonstrate that void nucleation is impeded in Al by room-temperature dynamic recrystallization (DRX), which erases these boundaries before voids can nucleate at them. If dislocation cells reform after DRX and before specimen separation by necking, voids nucleation is observed. These results indicate that dislocation substructures likely plays an important role in ductile rupture.

More Details

Microstructural Modification and Healing of Additively Manufactured Parts by Electropulsing

Noell, Philip; Rodelas, Jeffrey; Ghanbari, Zahra; Laursen, Christopher M.

For many applications, the promises of additive manufacturing (AM) of rapid development cycles and fabrication of ready-to-use, geometrically-complex parts cannot be realized because of cumbersome thermal postprocessing. This postprocessing is necessary when the nonequilibrium microstructures produced by AM lead to poor material properties. This study investigated if electropulsing, the process of sending high-current-density electrical pulses through a metallic part, could be used to modify the material properties of AM parts. This process has been used to modify conventional wrought materials but has never been applied to AM materials. Two representative AM materials were examined: 316L stainless steel and A1Si10Mg. Two hours of annealing are needed to remove chemical microsegregation in AM 316L; using electropulsing, this was accomplished in 200 seconds. The ductility of AlSil0Mg parts was increased above that of the as-built material using electropulsing. This study demonstrated that electropulsing can be used to modify the microstructures of AM metals.

More Details

Subgrains, Texture Evolution, and Dynamic Abnormal Grain Growth in a Mo Rod Material

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Noell, Philip; Taleff, Eric M.

The roles of subgrains, texture, and surface energy during dynamic abnormal grain growth (DAGG) were examined in a commercial-purity Mo rod material. DAGG was observed in this material during tensile deformation at 2023 K (1750 °C). Cooling of specimens after tensile testing was sufficiently rapid to preserve both subgrain structures developed during deformation and several abnormal grains at early stages of growth. These and other microstructural features were characterized to evaluate how subgrains and boundary character influence the early stages of DAGG. Subgrains were observed in the deformed polycrystalline material but were generally absent in newly formed abnormal grains. This was identified as the cause of the sudden drop in flow stress observed at the initiation of DAGG. It is proposed that subgrain intersections with abnormal grain boundaries provide a driving pressure for DAGG. Subgrains within the deformed polycrystals were observed to locally change the boundary curvature at their intersections with abnormal grain boundaries, which likely encouraged growth of the abnormal grains into the deformed polycrystals. Abnormal grains produced by DAGG retained crystallographic orientations and boundary characters that closely resembled those of the polycrystalline material from which they grew. This suggests that neither differences in orientation nor boundary character were important to DAGG in this material.

More Details

Mechanistic origins of stochastic rupture in metals

Noell, Philip; Carroll, J.D.; Jin, Helena; Kramer, S.L.B.; Sills, Ryan; Medlin, Douglas L.; Sabisch, Julian E.C.; Boyce, Brad L.

The classic models for ductile fracture of metals were based on experimental observations dating back to the 1950’s. Using advanced microscopy techniques and modeling algorithms that have been developed over the past several decades, it is possible now to examine the micro- and nano-scale mechanisms of ductile rupture in more detail. This new information enables a revised understanding of the ductile rupture process under quasi-static room temperature conditions in ductile pure metals and alloys containing hard particles. While ductile rupture has traditionally been viewed through the lens of nucleation-growth-and-coalescence, a new taxonomy is proposed involving the competition or cooperation of up to seven distinct rupture mechanisms. Generally, void nucleation via vacancy condensation is not rate limiting, but is extensive within localized shear bands of intense deformation. Instead, the controlling process appears to be the development of intense local dislocation activity which enables void growth via dislocation absorption.

More Details

The mechanisms of ductile rupture

Acta Materialia

Noell, Philip; Carroll, J.D.; Boyce, Brad L.

One of the most confounding controversies in the ductile fracture community is the large discrepancy between predicted and experimentally observed strain-to-failure values during shear-dominant loading. Currently proposed solutions focus on better accounting for how the deviatoric stress state influences void growth or on measuring strain at the microscale rather than the macroscale. While these approaches are useful, they do not address a significant aspect of the problem: the only rupture micromechanisms that are generally considered are void nucleation, growth, and coalescence (for tensile-dominated loading), and shear-localization and void coalescence (for shear-dominated loading). Current phenomenological models have thus focused on predicting the competition between these mechanisms based on the stress state and the strain-hardening capacity of the material. However, in the present study, we demonstrate that there are at least five other failure mechanisms. Because these have long been ignored, little is known about how all seven mechanisms interact with one another or the factors that control their competition. These questions are addressed by characterizing the fracture process in three high-purity face-centered cubic (FCC) metals of medium-to-high stacking fault energy: copper, nickel, and aluminum. These data demonstrate that, for a given stress state and material, several mechanisms frequently work together in a sequential manner to cause fracture. The selection of a failure mechanism is significantly affected by the plasticity-induced microstructural evolution that occurs before tearing begins, which can create or eliminate sites for void nucleation. At the macroscale, failure mechanisms that do not involve cracking or pore growth were observed to facilitate subsequent void growth and coalescence processes. While the focus of this study is on damage accumulation in pure metals, these results are also applicable to understanding failure in engineering alloys.

More Details
Results 51–75 of 87
Results 51–75 of 87