Publications

Results 201–242 of 242

Search results

Jump to search filters

Time Encoded Radiation Imaging

Marleau, P.; Brubaker, E.; Gerling, Mark; Schuster, Patricia F.; Steele, J.

Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. Designing such a system is a daunting task. Using timemodulated collimators could be a transformative technique leading to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. A new technique using time encoding to make a compact, high efficiency imaging detector was conceived. Design considerations using Monte Carlo modeling and the construction and demonstration of a prototype imager are described.

More Details

Ground water and snow sensor based on directional detection of cosmogenic neutrons

Griffin, Patrick J.; Marleau, P.

A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

More Details

Fast neutron resonance tomography using double scatter spectroscopy for materials identification

IEEE Nuclear Science Symposium Conference Record

Marleau, P.; Brennan, J.; Brubaker, E.; Mengesha, Wondwosen; Mrowka, Stanley

Fast neutron based inspection systems are of interest in many Homeland Security applications because they offer the potential for elemental identification particularly for low Z elements which are the prime constituents of explosives. We are investigating a resonance tomography technique which may address some of the current problems found in fast neutron based inspection systems. A commercial off-the-shelf DT generator is used with an array of detectors to probe materials simultaneously over a large energy range and multiple viewing angles allowing for simultaneous 3-D imaging and materials identification. A prototype system has been constructed and we present here recent results for the identification of materials with differing H, C, N, O compositions. © 2011 IEEE.

More Details

Time encoded fast neutron/gamma imager for large standoff SNM detection

IEEE Nuclear Science Symposium Conference Record

Marleau, P.; Brennan, J.; Brubaker, E.; Gerling, Mark; Schuster, Patricia F.; Steele, J.

Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be directly achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. We are exploring the use of time-modulated collimators that may lead to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. We will present results from a large standoff SNM detection demonstration using a prototype high sensitivity time encoded modulation imager. © 2011 IEEE.

More Details

Results with a 32-element dual mode imager

Mascarenhas, Nicholas M.; Cooper, Robert; Marleau, P.; Mrowka, Stanley; Brennan, J.

We present advances with a 32 element scalable, segmented dual mode imager. Scaling up the number of cells results in a 1.4 increase in efficiency over a system we deployed last year. Variable plane separation has been incorporated which further improves the efficiency of the detector. By using 20 cm diameter cells we demonstrate that we could increase sensitivity by a factor of 6. We further demonstrate gamma ray imaging in from Compton scattering. This feature allows for powerful dual mode imaging. Selected results are presented that demonstrate these new capabilities.

More Details

Applying the neutron scatter camera to treaty verification and warhead monitoring

Mascarenhas, Nicholas M.; Cooper, Robert; Mrowka, Stanley; Brennan, J.; Marleau, P.

The neutron scatter camera was originally developed for a range of SNM detection applications. We are now exploring the feasibility of applications in treaty verification and warhead monitoring using experimentation, maximum likelihood estimation method (MLEM), detector optimization, and MCNP-PoliMi simulations.

More Details

Results with a 32 element dual mode imager

Brennan, J.; Cooper, Robert; Mrowka, Stanley; Marleau, P.

We present advances with a 32 element scalable, segmented dual mode imager. Scaling up the number of cells results in a 1.4 increase in efficiency over a system we deployed last year. Variable plane separation has been incorporated which further improves the efficiency of the detector. By using 20 cm diameter cells we demonstrate that we could increase sensitivity by a factor of 6. We further demonstrate gamma ray imaging in from Compton scattering. This feature allows for powerful dual mode imaging. Selected results are presented that demonstrate these new capabilities.

More Details

A novel dual mode neutron-gamma imager

Mascarenhas, Nicholas M.; Brennan, J.; Cooper, Robert; Mrowka, Stanley; Marleau, P.

The Neutron Scatter Camera (NSC) can image fission sources and determine their energy spectra at distances of tens of meters and through significant thicknesses of intervening materials in relatively short times [1]. We recently completed a 32 element scatter camera and will present recent advances made with this instrument. A novel capability for the scatter camera is dual mode imaging. In normal neutron imaging mode we identify and image neutron events using pulse shape discrimination (PSD) and time of flight in liquid scintillator. Similarly gamma rays are identified from Compton scatter in the front and rear planes for our segmented detector. Rather than reject these events, we show it is possible to construct a gamma-ray image by running the analysis in a 'Compton mode'. Instead of calculating the scattering angle by the kinematics of elastic scatters as is appropriate for neutron events, it can be found by the kinematics of Compton scatters. Our scatter camera has not been optimized as a Compton gamma-ray imager but is found to work reasonably. We studied imaging performance using a Cs137 source. We find that we are able to image the gamma source with reasonable fidelity. We are able to determine gamma energy after some reasonable assumptions. We will detail the various algorithms we have developed for gamma image reconstruction. We will outline areas for improvement, include additional results and compare neutron and gamma mode imaging.

More Details

Calibration and simulation of a coded aperture neutron imaging system

IEEE Nuclear Science Symposium Conference Record

Brubaker, E.; Brennan, J.; Hilton, Nathan R.; Marleau, P.; Steele, J.

Coded aperture neutron imaging detectors have the potential to be a powerful tool for the detection of special nuclear material at long range or under heavy shielding, using the signature of fast neutrons from spontaneous fission. We are building a prototype system using liquid scintillator cells, measuring 20'' x 2.5'' x 2.5'' each, in a reconfigurable arrangement. A cross-calibration of the observed detector data with the output of Monte Carlo simulation can both improve the sensitivity of the detector to fast neutron sources and increase the simulation accuracy, allowing the study of next-generation detector designs. Here we describe the tools and procedures developed to calibrate and simulate the detector response, including energy scale and resolution, interaction position, and gamma-neutron separation using pulse shape discrimination. Detector data and simulation are in good agreement for a test configuration. ©2009 IEEE.

More Details

Land-surface studies with a directional neutron detector

Desilets, Darin M.; Marleau, P.; Brennan, J.

Direct measurements of cosmic-ray neutron intensity were recorded with a neutron scatter camera developed at SNL. The instrument used in this work is a prototype originally designed for nuclear non-proliferation work, but in this project it was used to characterize the response of ambient neutrons in the 0.5-10 MeV range to water located on or above the land surface. Ambient neutron intensity near the land surface responds strongly to the presence of water, suggesting the possibility of an indirect method for monitoring soil water content, snow water equivalent depth, or canopy intercepted water. For environmental measurements the major advantage of measuring neutrons with the scatter camera is the limited (60{sup o}) field of view that can be obtained, which allows observations to be conducted at a previously unattainable spatial scales. This work is intended to provide new measurements of directional fluxes which can be used in the design of new instruments for passively and noninvasively observing land-surface water. Through measurements and neutron transport modeling we have demonstrated that such a technique is feasible.

More Details

Results with the neutron scatter camera

Brennan, J.; Krenz, Kevin D.; Marleau, P.; Mrowka, Stanley; Mascarenhas, Nicholas M.

We describe the design, calibration, and measurements made with the neutron scatter camera. Neutron scatter camera design allows for the determination of the direction and energy of incident neutrons by measuring the position, recoil energy, and time-of-flight (TOF) between elastic scatters in two liquid scintillator cells. The detector response and sensitive energy range (0.5-10 MeV) has been determined by detailed calibrations using a {sup 252}Cf neutron source over its field of view (FOV). We present results from several recent deployments. In a laboratory study we detected a {sup 252}Cf neutron source at a stand off distance of 30 m. A hidden neutron source was detected inside a large ocean tanker. We measured the integral flux density, differential energy distribution and angular distribution of cosmic neutron background in the fission energy range 0.5-10 MeV at Alameda, CA (sea level), Livermore, CA (174 m), Albuquerque, NM (1615 m) and Fenton Hill, NM (2630 m). The neutron backgrounds are relatively low, and non-isotropic. The camera has been ruggedized, deployed to various locations and has performed various measurements successfully. Our results show fast neutron imaging could be a useful tool for the detection of special nuclear material (SNM).

More Details

Imaging vs. non-imaging in long range neutron detection scenarios

Marleau, P.; Vaughn, Andrew C.; Mascarenhas, Nicholas M.

Standoff neutron detection technology has advanced in recent years, primarily for counterterrorism applications. Sandia National Laboratories has developed the Neutron Scatter Camera -- a fast neutron imaging system using liquid scintillator with potential applications in long range neutron detection. This talk will explore the pros, cons and practical uses of the Neutron Scatter Camera versus more traditional neutron detectors such as He-3 proportional counters. Several applications for neutron detection and imaging will be explored. We will perform predictive calculations of the response of the Neutron Scatter Camera and traditional He-3 detectors. The applications range from counterterrorism to arms control to safeguards. We will discuss future evolution of the scatter camera to enhance long range detection.

More Details
Results 201–242 of 242
Results 201–242 of 242