This report outlines the fiscal year (FY) 2019 status of an ongoing multi-year effort to develop a general, microstructurally-aware, continuum-level model for representing the dynamic response of material with complex microstructures. This work has focused on accurately representing the response of both conventionally wrought processed and additively manufactured (AM) 304L stainless steel (SS) as a test case. Additive manufacturing, or 3D printing, is an emerging technology capable of enabling shortened design and certification cycles for stockpile components through rapid prototyping. However, there is not an understanding of how the complex and unique microstructures of AM materials affect their mechanical response at high strain rates. To achieve our project goal, an upscaling technique was developed to bridge the gap between the microstructural and continuum scales to represent AM microstructures on a Finite Element (FE) mesh. This process involves the simulations of the additive process using the Sandia developed kinetic Monte Carlo (KMC) code SPPARKS. These SPPARKS microstructures are characterized using clustering algorithms from machine learning and used to populate the quadrature points of a FE mesh. Additionally, a spall kinetic model (SKM) was developed to more accurately represent the dynamic failure of AM materials. Validation experiments were performed using both pulsed power machines and projectile launchers. These experiments have provided equation of state (EOS) and flow strength measurements of both wrought and AM 304L SS to above Mbar pressures. In some experiments, multi-point interferometry was used to quantify the variation is observed material response of the AM 304L SS. Analysis of these experiments is ongoing, but preliminary comparisons of our upscaling technique and SKM to experimental data were performed as a validation exercise. Moving forward, this project will advance and further validate our computational framework, using advanced theory and additional high-fidelity experiments.
Energetic materials (i.e. explosives, propellants, and pyrotechnics) have complex mesoscale features that influence their dynamic response. Direct measurement of the complex mechanical, thermal, and chemical response of energetic materials is critical for improving computational models and enabling predictive capabilities. Many of the physical phenomena of interest in energetic materials cover time and length scales spanning several orders of magnitude. Examples include chemical interactions in the reaction zone, the distribution and evolution of temperature fields, mesoscale deformation in heterogeneous systems, and phase transitions. This is particularly true for spontaneous phenomena, like thermal cook-off. The ability for MaRIE to capture multiple length scales and stochastic phenomena can significantly advance our understanding of energetic materials and yield more realistic, predictive models.
We report real-time observations of a phase transition in the ionic solid CaF2, a model AB2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.
A multi-point microwave interferometer (MPMI) concept is presented for non-invasively monitoring the internal transit of a shock, detonation, or reaction front in energetic media. The concept utilizes an electro-optic (EO) crystal to impart a timevarying phase lag onto a laser with a microwave signal. Polarization optics convert this phase lag into an amplitude modulation. A heterodyne interferometer compares the modulated laser beam to a constant reference. This enables the detection of changes in the modulating microwave frequency generated by the motion of the measurement surface. The design is scalable and makes use of the established construction and analysis methods employed in photonic Doppler velocimetry (PDV). The technical challenges associated with the concept are the frequency stability of the lasers, the amount of light return after EO modulation, and the frequency uncertainty of fast Fourier transform (FFT) methods.
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.