Publications

Results 101–125 of 234

Search results

Jump to search filters

Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

Kuhlman, Kristopher L.; Brady, Patrick V.; Mackinnon, Robert J.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Rigali, Mark J.; Hadgu, Teklu; Sevougian, Stephen D.; Birkholzer, Jens; Freifeld, Barry M.; Daley, Tom

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

More Details

Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

Bioresource Technology

Hewson, John C.; Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V.; Muylaert, Koenraad

Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

More Details

Deep Borehole Field Test: Characterization Borehole Science Objectives

Kuhlman, Kristopher L.; Brady, Patrick V.; Mackinnon, Robert J.; Gardner, William P.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Hadgu, Teklu; Sevougian, Stephen D.; Birkholzer, Jens; Freifeld, Barry M.; Daley, Tom

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD as a key strategy objective. DOE’s Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel (DOE 2014a) concludes “effective implementation of a strategy for management and disposal of all High-Level Waste and Spent Nuclear Fuel” would include focused research on deep boreholes, especially to retain flexible options for disposal of physically smaller DOEmanaged solid radioactive waste forms. More information regarding the characteristics, quantities, and sizes of these physically smaller waste forms is in the Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste (SNL 2014).

More Details

Site characterization for a deep borehole field test

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Kuhlman, Kristopher L.; Arnold, Bill W.; Brady, Patrick V.; Sassani, David C.; Freeze, Geoffrey; Hardin, Ernest

Deep Borehole Disposal (DBD) of radioactive waste has some clear advantages over mined repositories, including incremental construction and loading, enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Unfavorable features for a DBD site include upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection from the waste disposal zone to the shallow subsurface, and significant probability of future volcanic activity. Site characterization activities would encompass geomechanical (i.e., rock stress state, fluid pressure, and faulting), geological (i.e., both overburden and bedrock lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), chemical (i.e., rock and fluid interaction), and socioeconomic (i.e., likelihood for human intrusion) aspects. For a planned Deep Borehole Field Test (DBFT), site features and/or physical processes would be evaluated using both direct (i.e., sampling and in-hole testing) and indirect (i.e., surface and borehole geophysical) methods for efficient and effective characterization. Surface-based characterization would be used to guide the exploratory drilling program, once a candidate DBFT site has been selected. Borehole based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, petrology, and water chemistry) with depth, and to develop material and system parameters relevant for numerical simulation. While the site design of DBD could involve an array of disposal boreholes, it may not be necessary to characterize each borehole in detail. Characterization strategies will be developed in the DBFT that establish disposal system safety sufficient for licensing a disposal array.

More Details

Siting guidelines for a deep borehole disposal facility

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Freeze, Geoffrey; Brady, Patrick V.; Sassani, David C.; Kuhlman, Kristopher L.

This paper describes technical, logistical, and sociopolitical factors to be considered in the development of guidelines for siting a facility for deep borehole disposal of radioactive waste. Technical factors include geological, hydro-geochemical, and geophysical characteristics that are related to the suitability of the site for drilling and borehole construction, waste emplacement activities, waste isolation, and long-term safety of the deep borehole disposal system. Logistical factors to be considered during site selection include: The local or regional availability of drilling contractors (equipment, services, and materials) capable of drilling a large-diameter borehole to approximately 5 km depth; the legal and regulatory requirements associated with drilling, construction of surface facilities, waste handling and emplacement, and postclosure safety; and access to transportation systems. Social and political factors related to site selection include the distance from population centers and the support or opposition of local and state entities and other stakeholders to the facility and its operations. These considerations are examined in the context of the siting process and guidelines for a deep borehole field test, designed to evaluate the feasibility of siting and operating a deep borehole disposal facility.

More Details

Research needs for deep boreholes

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Brady, Patrick V.; Mackinnon, Robert J.; Arnold, Bill W.; Hardin, Ernest; Sassani, David C.; Kuhlman, Kristopher L.; Freeze, Geoffrey

While deep borehole disposal of nuclear waste should rely primarily on off-the-shelf technologies pioneered by the oil and gas and geothermal industries, the development of new science and technology will remain important. Key knowledge gaps have been outlined in the research roadmap for deep boreholes (B. Arnold et al, 2012, Research, Development, and Demonstration Roadmap for Deep Borehole Disposal, Sandia National Laboratories, SAND2012-8527P) and in a recent Deep Borehole Science Needs Workshop. Characterizing deep crystalline basement, understanding the nature and role of deep fractures, more precisely age-dating deep groundwaters, and demonstrating long-term performance of seals are all important topics of interest. Overlapping deep borehole and enhanced geothermal technology needs include: quantification of seal material performance/failure, stress measurement beyond the borehole, advanced drilling and completion tools, and better subsurface sensors. A deep borehole demonstration has the potential to trigger more focused study of deep hydrology, high temperature brine-rock interaction, and thermomechanical behavior.

More Details

Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals

Arnold, Bill W.; Brady, Patrick V.; Sutton, Mark; Travis, Karl; Mackinnon, Robert J.; Gibb, Fergus; Greenberg, Harris

This report documents deep borehole disposal research during FY2014, as directed by U.S. Department of Energy (DOE) Used Fuel Disposition (UFD) Campaign. These research efforts are principally directed at advancing the deep borehole disposal project to the implementation of a full-scale Research, Development, and Demonstration (RD&D) project. Activities of particular relevance to this goal include evaluation of guidelines for selection of a deep borehole field test site, analyses of deep borehole disposal of alternative waste forms, and technical planning for borehole seals research.

More Details
Results 101–125 of 234
Results 101–125 of 234