The Identity and Role of Interphases in Regulating Mg Anode Morphology Evolution
Abstract not provided.
Abstract not provided.
Nano Energy
Lithium-sulfur (Li–S) battery is one of the most promising candidates for the next generation energy storage systems. However, several barriers, including polysulfide shuttle effect, the slow solid-solid surface reaction pathway in the lower discharge plateau, and corrosion of Li anode still limit its practical applications, especially under the lean electrolyte condition required for high energy density. Here, we propose a solution-mediated sulfur reduction pathway to improve the capacity and reversibility of the sulfur cathode. With this method, a high coulombic efficiency (99%) and stable cycle life over 100 cycles were achieved under application-relevant conditions (S loading: 6.2 mg cm−2; electrolyte to sulfur ratio: 3 mLE gs−1; sulfur weight ratio: 72 wt%). This result is enabled by a specially designed Li2S4-rich electrolyte, in which Li2S is formed through a chemical disproportionation reaction instead of electrochemical routes. A single diglyme solvent was used to obtain electrolytes with the optimum range of Li2S4 concentration. Operando X-ray absorption spectroscopy confirms the solution pathway in a practical Li–S cell. This solution pathway not only introduces a new electrolyte regime for practical Li–S batteries, but also provides a new perspective for bypassing the inefficient surface pathway for other electrochemical processes.
Abstract not provided.
ACS Applied Energy Materials
The emergence of magnesium and calcium batteries as potential beyond Li ion energy storage technologies has generated significant interest into the fundamental aspects of alkaline earth metal cation coordination in multivalent electrolytes and the impact of coordination on application-critical electrolyte properties such as solubility, transport, and electrochemical stability. Understanding these details in calcium electrolytes is of immediate importance due to recent, unprecedented demonstrations of reversible calcium metal electrodeposition in a limited number of ethereal solvent-based systems. In this work, we provide insight connecting Ca2+ coordination tendencies to important calcium battery electrolyte properties. Our results demonstrate a clear solvent:Ca2+ coordination strength trend across a series of cyclic ether and linear glyme solvents that controls the extent of ion association in solutions of "weakly"coordinating salts. We apply understanding gained from these results to rationalize relative anion:Ca2+ coordination tendencies and attendant Ca2+ coordination structures using two oxidatively stable anions of particular interest for current battery electrolytes. Armed with this understanding of solvent and anion interactions with Ca2+, we demonstrate and interpret differences in electrochemical calcium deposition behavior across several electrolyte exemplars with varying solvent and anion coordination strengths. Our findings demonstrate that solvents exhibiting especially strong coordination to Ca2+, such as triglyme, can inhibit reversible calcium deposition despite effective elimination of anion:Ca2+ coordination while solvents exhibiting more modest coordination strength, such as 1,2-dimethoxyethane, may enable deposition provided anion:Ca2+ coordination is substantially limited. These results reveal that the strength of coordination of both anion and solvent should be considered in the design of electrolytes for calcium batteries.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Chemistry A
Redox flow batteries are attractive technologies for grid energy storage since they use solutions of redox-active molecules that enable a superior scalability and the decoupling of power and energy density. However, the reaction mechanisms of the redox active components at RFB electrodes are complex, and there is currently a pressing need to understand how interfacial processes impact the kinetics and operational reversibility of RFB systems. Here, we developed a combined electrochemical imaging methodology rooted in scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) for exploring the impact of electrode structure and conditioning on the electron transfer properties of model redox-active dialkoxybenzene derivatives, 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (C1) and 2,3-dimethyl-1,4-dialkoxybenzene (C7). Using AFM and secondary-ion mass spectrometry (SIMS), we observed the formation of interfacial films with distinct mechanical properties compared to those of cleaved graphitic surfaces, and exclusively during reduction of electrogenerated radical cations. These films had an impact on the median rate and distribution of the electron transfer rate constant at the basal plane of multilayer and single layer graphene electrodes, displaying kinetically-limited values that did not yield the activation expected per the Butler-Volmer model with a transfer coefficient ∼0.5. These changes were dependent on redoxmer structure: SECM showed strong attenuation of C7 kinetics by a surface layer on MLG and SLG, while C1 kinetics were only affected by SLG. SECM and AFM results together show that these limiting films operate exclusively on the basal plane of graphite, with the edge plane showing a relative insensitivity to cycling and operation potential. This integrated electrochemical imaging methodology creates new opportunities to understand the unique role of interfacial processes on the heterogeneous reactivity of redoxmers at electrodes for RFBs, with a future role in elucidating phenomena at high active concentrations and spatiotemporal variations in electrode dynamics. This journal is
Proceedings of the National Academy of Sciences of the United States of America
Energy storage is an integral part of modern society. A contemporary example is the lithium (Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and the first commercial electric vehicles in 2010. Most recently, Li-ion batteries have expanded into the electricity grid to firm variable renewable generation, increasing the efficiency and effectiveness of transmission and distribution. Important applications continue to emerge including decarbonization of heavy-duty vehicles, rail, maritime shipping, and aviation and the growth of renewable electricity and storage on the grid. This perspective compares energy storage needs and priorities in 2010 with those now and those emerging over the next few decades. The diversity of demands for energy storage requires a diversity of purpose-built batteries designed to meet disparate applications. Advances in the frontier of battery research to achieve transformative performance spanning energy and power density, capacity, charge/discharge times, cost, lifetime, and safety are highlighted, along with strategic research refinements made by the Joint Center for Energy Storage Research (JCESR) and the broader community to accommodate the changing storage needs and priorities. Innovative experimental tools with higher spatial and temporal resolution, in situ and operando characterization, first-principles simulation, high throughput computation, machine learning, and artificial intelligence work collectively to reveal the origins of the electrochemical phenomena that enable new means of energy storage. This knowledge allows a constructionist approach to materials, chemistries, and architectures, where each atom or molecule plays a prescribed role in realizing batteries with unique performance profiles suitable for emergent demands.
Journal of Materials Chemistry A
Development of calcium metal batteries has been historically frustrated by a lack of electrolytes capable of supporting reversible calcium electrodeposition. In this paper, we report the study of an electrolyte consisting of Ca(BH4)2 in tetrahydrofuran (THF) to gain important insight into the role of the liquid solvation environment in facilitating the reversible electrodeposition of this highly reactive, divalent metal. Through interrogation of the Ca2+ solvation environment and comparison with Mg2+ analogs, we show that an ability to reversibly electrodeposit metal at reasonable rates is strongly regulated by dication charge density and polarizability. Our results indicate that the greater polarizability of Ca2+ over Mg2+ confers greater configurational flexibility, enabling ionic cluster formation via neutral multimer intermediates. Increased concentration of the proposed electroactive species, CaBH4+, enables rapid and stable delivery of Ca2+ to the electrode interface. This work helps set the stage for future progress in the development of electrolytes for calcium and other divalent metal batteries.
Journal of Physical Chemistry Letters
Detailed speciation of electrolytes as a function of chemical system and concentration provides the foundation for understanding bulk transport as well as possible decomposition mechanisms. In particular, multivalent electrolytes have shown a strong coupling between anodic stability and solvation structure. Furthermore, solvents that are found to exhibit reasonable stability against alkaline-earth metals generally exhibit low permittivity, which typically increases the complexity of the electrolyte species. To improve our understanding of ionic population and associated transport in these important classes of electrolytes, the speciation of Mg(TFSI)2 in monoglyme and diglyme systems is studied via a multiscale thermodynamic model using first-principles calculations for ion association and molecular dynamics simulations for dielectric properties. The results are then compared to Raman and dielectric relaxation spectroscopies, which independently confirm the modeling insights. We find that the significant presence of free ions in the low-permittivity glymes in the concentration range from 0.02 to 0.6 M is well-explained by the low-permittivity redissociation hypothesis. Here, salt speciation is largely dictated by long-range electrostatics, which includes permittivity increases due to polar contact ion pairs. The present results suggest that other low-permittivity multivalent electrolytes may also reach high conductivities as a result of redissociation.
ACS Energy Letters
Conventional electrolytes made by mixing simple Mg2+ salts and aprotic solvents, analogous to those in Li-ion batteries, are incompatible with Mg anodes because Mg metal readily reacts with such electrolytes, producing a passivation layer that blocks Mg2+ transport. In this paper, we report that, through tuning a conventional electrolyte—Mg(TFSI)2 (TFSI– is N(SO2CF3)2–)—with an Mg(BH4)2 cosalt, highly reversible Mg plating/stripping with a high Coulombic efficiency is achieved by neutralizing the first solvation shell of Mg cationic clusters between Mg2+ and TFSI– and enhanced reductive stability of free TFSI–. A critical adsorption step between Mg0 atoms and active Mg cation clusters involving BH4– anions is identified to be the key enabler for reversible Mg plating/stripping through analysis of the distribution of relaxation times (DRT) from operando electrochemical impedance spectroscopy (EIS), operando electrochemical X-ray absorption spectroscopy (XAS), nuclear magnetic resonance (NMR), and density functional theory (DFT) calculations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Engineered solid-liquid interfaces will play an important role in the development of future energy storage and conversion (ESC) devices. In the present study, defective graphene oxide (GO) and reduced graphene oxide (rGO) structures were used as engineered interfaces to tune the selectivity and activity of Pt disk electrodes. GO was deposited on Pt electrodes via the Langmuir-Blodgett technique, which provided compact and uniform GO films, and these films were subsequently converted to rGO by thermal reduction. Electrochemical measurements revealed that both GO and rGO interfaces on Pt electrodes exhibit selectivity toward the oxygen reduction reaction (ORR), but they do not have an impact on the activity of the hydrogen oxidation reaction in acidic environments. Scanning transmission electron microscopy at atomic resolution, along with Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), revealed possible diffusion sites for H2 and O2 gas molecules and functional groups relevant to the selectivity and activity of these surfaces. Based on these insights, rGO interfaces are further demonstrated to exhibit enhanced activity for the ORR in nonaqueous environments and demonstrate the power of our ex situ engineering approach for the development of next-generation ESC devices.
Abstract not provided.
Abstract not provided.
Nano Letters
To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g., ∼0.2 to >0.70) when confined to a structurally rigid polymer host whose pores are on a similar length scale (0.5-2 nm) as the Debye screening length in the electrolyte, which results in a diffuse electrolyte double layer at the polymer-electrolyte interface that retains counterions and reject co-ions from the electrolyte due to their larger size. Lithium anodes coated with ∼1 μm thick overlayers of the polymer host exhibit both a low area-specific resistance and clear dendrite-suppressing character, as evident from their performance in Li-Li and Li-Cu cells as well as in post-mortem analysis of the anode's morphology after cycling. High areal capacity Li-S cells (4.9 mg cm -2 8.2 mAh cm -2 ) implementing these high transference number polymer-hosted liquid electrolytes were remarkably stable, considering ∼24 μm of lithium was electroreversibly deposited in each cycle at a C-rate of 0.2. We further identified a scalable manufacturing path for these polymer-coated lithium electrodes, which are drop-in components for lithium metal battery manufacturing.
Abstract not provided.
This quarter, we have focused on characterizing the electrochemical response, both through cyclic voltammetry and through constant current charge/discharge characterization of the silicon samples coated with silicates containing varying amounts of Li in the SiOx layer. These studies were performed using a standard Gen-2 electrolyte without FEC. We also performed electrochemical impedance spectroscopy on samples exposed to the Gen-2 electrolyte continually, and collected EIS spectra as a function of time and temperature.
Frontiers in Chemistry
Rational design of novel electrolytes with enhanced functionality requires fundamental molecular-level understanding of structure-property relationships. Here we examine the suitability of a range of organic solvents for non-aqueous electrolytes in secondary magnesium batteries using density functional theory (DFT) calculations as well as experimental probes such as cyclic voltammetry and Raman spectroscopy. The solvents considered include ethereal solvents (e.g., glymes) sulfones (e.g., tetramethylene sulfone), and acetonitrile. Computed reduction potentials show that all solvents considered are stable against reduction by Mg metal. Additional computations were carried out to assess the stability of solvents in contact with partially reduced Mg cations (Mg 2+ → Mg + ) formed during cycling (e.g., deposition) by identifying reaction profiles of decomposition pathways. Most solvents, including some proposed for secondary Mg energy storage applications, exhibit decomposition pathways that are surprisingly exergonic. Interestingly, the stability of these solvents is largely dictated by magnitude of the kinetic barrier to decomposition. This insight should be valuable toward rational design of improved Mg electrolytes.
Abstract not provided.
Abstract not provided.
Abstract not provided.