Publications

Results 51–75 of 116
Skip to search filters

Numeruical modeling of flow and transport in fractured crystalline rock

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Hadgu, Teklu H.; Kalinina, Elena A.; Klise, Katherine A.; Wang, Yifeng

Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method [1] has been updated to provide capabilities that enhance representation of fractured rock. A companion paper [2] provides details of the methods for generating fracture network. In this paper use of the fracture model for the simulation of flow and transport is presented. Simulations were conducted to estimate flow and transport using an enhanced FCM method. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization FCM produced permeability and porosity fields. The PFLOTRAN code [3] was used to simulate flow and transport. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest to nuclear waste disposal modeling applied over large domains.

More Details

A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study

Environmental Modelling and Software

Klise, Katherine A.; Bynum, Michael L.; Moriarty, Dylan; Murray, Regan

Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source Python™ package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resources and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.

More Details

Water Network Tool for Resilience Version 0.1

Klise, Katherine A.; Murray, Regan M.; Bynum, Michael B.; Moriarty, Dylan

Water utilities are vulnerable to a wide variety of human-caused and natural disasters. These disruptive events can result in loss of water service, contaminated water, pipe breaks, and failed equipment. Furthermore, long term changes in water supply and customer demand can have a large impact on the operating conditions of the network. The ability to maintain drinking water service during and following these types of events is critical. Simulation and analysis tools can help water utilities explore how their network will respond to disruptive events and plan effective mitigation strategies. The U.S. Environmental Protection Agency and Sandia National Laboratories are developing new software tools to meet this need. The Water Network Tool for Resilience (WNTR, pronounced winter) is a Python package designed to help water utilities investigate resilience of water distribution systems over a wide range of hazardous scenarios and to evaluate resilience-enhancing actions. The following documentation includes installation instructions and examples, description of software features, and software license. It is assumed that the reader is familiar with the Python Programming Language.

More Details

Automated contact angle estimation for three-dimensional X-ray microtomography data

Advances in Water Resources

Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu Y.; Karpyn, Zuleima

Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contact angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Wetting characteristics in mixed-wet systems also change significantly after displacement cycles.

More Details

Testing contamination source identification methods for water distribution networks

Journal of Water Resources Planning and Management

Seth, Arpan; Klise, Katherine A.; Siirola, John D.; Haxton, Terranna; Laird, Carl D.

In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections, and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA's Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Finally, a set of recommendations are made for users to consider when working with different categories of SI methods.

More Details

Pore-scale investigation on stress-dependent characteristics of granular packs and the impact of pore deformation on fluid distribution

Geofluids

Torrealba, V.A.; Karpyn, Z.T.; Yoon, Hongkyu Y.; Klise, Katherine A.; Crandall, D.

Understanding the effect of changing stress conditions on multiphase flow in porous media is of fundamental importance for many subsurface activities including enhanced oil recovery, water drawdown from aquifers, soil confinement, and geologic carbon storage. Geomechanical properties of complex porous systems are dynamically linked to flow conditions, but their feedback relationship is often oversimplified due to the difficulty of representing pore-scale stress deformation and multiphase flow characteristics in high fidelity. In this work, we performed pore-scale experiments of single- and multiphase flow through bead packs at different confining pressure conditions to elucidate compaction-dependent characteristics of granular packs and their impact on fluid flow. A series of drainage and imbibition cycles were conducted on a water-wet, soda-lime glass bead pack under varying confining stress conditions. Simultaneously, X-ray micro-CT was used to visualize and quantify the degree of deformation and fluid distribution corresponding with each stress condition and injection cycle. Micro-CT images were segmented using a gradient-based method to identify fluids (e.g., oil and water), and solid phase redistribution throughout the different experimental stages. Changes in porosity, tortuosity, and specific surface area were quantified as a function of applied confining pressure. Results demonstrate varying degrees of sensitivity of these properties to confining pressure, which suggests that caution must be taken when considering scalability of these properties for practical modeling purposes. Changes in capillary number with confining pressure are attributed to the increase in pore velocity as a result of pore contraction. However, this increase in pore velocity was found to have a marginal impact on average phase trapping at different confining pressures.

More Details
Results 51–75 of 116
Results 51–75 of 116