Publications

Results 101–150 of 433

Search results

Jump to search filters

Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys

Safta, Cosmin; Geraci, Gianluca; Eldred, Michael; Najm, Habib N.; Riegner, David; Windl, Wolfgang

This study explores a Bayesian calibration framework for the RAMPAGE alloy potential model for Cu-Ni and Cu-Zr systems, respectively. In RAMPAGE potentials, it is proposed that once calibrated potentials for individual elements are available, the inter-species interactions can be described by fitting a Morse potential for pair interactions with three parameters, while densities for the embedding function can be scaled by two parameters from the elemental densities. Global sensitivity analysis tools were employed to understand the impact each parameter has on the MD simulation results. A transitional Markov Chain Monte Carlo algorithm was used to generate samples from the multimodal posterior distribution consistent with the discrepancy between MD simulation results and DFT data. For the Cu-Ni system the posterior predictive tests indicate that the fitted interatomic potential model agrees well with the DFT data, justifying the basic RAMPAGE assumptions. For the Cu-Zr system, where the phase diagram suggests more complicated atomic interactions than in the case of Cu-Ni, the RAMPAGE potential captured only a subset of the DFT data. The resulting posterior distribution for the 5 model parameters exhibited several modes, with each mode corresponding to specific simulation data and a suboptimal agreement with the DFT results.

More Details

Probabilistic inference of reaction rate parameters from summary statistics

Combustion Theory and Modelling

Khalil, Mohammad; Najm, Habib N.

This investigation tackles the probabilistic parameter estimation problem involving the Arrhenius parameters for the rate coefficient of the chain branching reaction H + O2 → OH + O. This is achieved in a Bayesian inference framework that uses indirect data from the literature in the form of summary statistics by approximating the maximum entropy solution with the aid of approximate bayesian computation. The summary statistics include nominal values and uncertainty factors of the rate coefficient, obtained from shock-tube experiments performed at various initial temperatures. The Bayesian framework allows for the incorporation of uncertainty in the rate coefficient of a secondary reaction, namely OH + H2 → H2O + H, resulting in a consistent joint probability density on Arrhenius parameters for the two rate coefficients. It also allows for uncertainty quantification in numerical ignition predictions while conforming with the published summary statistics. The method relies on probabilistic reconstruction of the unreported data, OH concentration profiles from shock-tube experiments, along with the unknown Arrhenius parameters. The data inference is performed using a Markov chain Monte Carlo sampling procedure that relies on an efficient adaptive quadrature in estimating relevant integrals needed for data likelihood evaluations. For further efficiency gains, local Padé–Legendre approximants are used as surrogates for the time histories of OH concentration, alleviating the need for 0-D auto-ignition simulations. The reconstructed realisations of the missing data are used to provide a consensus joint posterior probability density on the unknown Arrhenius parameters via probabilistic pooling. Uncertainty quantification analysis is performed for stoichiometric hydrogen–air auto-ignition computations to explore the impact of uncertain parameter correlations on a range of quantities of interest.

More Details

Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions

SIAM/ASA Journal on Uncertainty Quantification

Huan, Xun H.; Safta, Cosmin; Sargsyan, Khachik; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.

Here, compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quantification analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several compressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers l1_ls, SpaRSA, CGIST, FPC_AS, and ADMM, we develop techniques to mitigate overfitting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these techniques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-crossflow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy, and computational trade-offs between polynomial bases of different degrees, and practicability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.

More Details

Chance-constrained economic dispatch with renewable energy and storage

Computational Optimization and Applications

Safta, Cosmin; Cheng, Jianqiang; Najm, Habib N.; Pinar, Ali P.; Chen, Richard L.Y.; Watson, Jean-Paul

Increasing penetration levels of renewables have transformed how power systems are operated. High levels of uncertainty in production make it increasingly difficulty to guarantee operational feasibility; instead, constraints may only be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, we require that wind energy contribute at least a prespecified proportion of the total demand and that the scheduled wind energy is deliverable with high probability. We develop an approximate partial sample average approximation (PSAA) framework to enable efficient solution of large-scale chance-constrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed satisfaction tolerance, and approximately 100 times faster than standard sample average approximation. Finally, the improved efficiency of our PSAA approach enables solution of a larger WECC-240 test system in minutes.

More Details

Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

Computer Methods in Applied Mechanics and Engineering

Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function as a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.

More Details

Compressive sensing with cross-validation and stop-sampling for sparse polynomial chaos expansions

SIAM-ASA Journal on Uncertainty Quantification

Huan, Xun H.; Safta, Cosmin; Sargsyan, Khachik; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.

Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quantification analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several compressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers l1_ls, SpaRSA, CGIST, FPC_AS, and ADMM, we develop techniques to mitigate overfitting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these techniques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-crossflow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy, and computational trade-offs between polynomial bases of different degrees, and practicability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.

More Details

Multifidelity statistical analysis of large eddy simulations in scramjet computations

AIAA Non-Deterministic Approaches Conference, 2018

Huan, Xun H.; Geraci, Gianluca; Safta, Cosmin; Eldred, Michael; Sargsyan, Khachik; Vane, Zachary P.; Oefelein, Joseph C.; Najm, Habib N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress towards optimal engine designs requires accurate and computationally affordable flow simulations, as well as uncertainty quantification (UQ). While traditional UQ techniques can become prohibitive under expensive simulations and high-dimensional parameter spaces, polynomial chaos (PC) surrogate modeling is a useful tool for alleviating some of the computational burden. However, non-intrusive quadrature-based constructions of PC expansions relying on a single high-fidelity model can still be quite expensive. We thus introduce a two-stage numerical procedure for constructing PC surrogates while making use of multiple models of different fidelity. The first stage involves an initial dimension reduction through global sensitivity analysis using compressive sensing. The second stage utilizes adaptive sparse quadrature on a multifidelity expansion to compute PC surrogate coefficients in the reduced parameter space where quadrature methods can be more effective. The overall method is used to produce accurate surrogates and to propagate uncertainty induced by uncertain boundary conditions and turbulence model parameters, for performance quantities of interest from large eddy simulations of supersonic reactive flows inside a scramjet engine.

More Details

Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin; Sargsyan, Khachik; Geraci, Gianluca; Eldred, Michael; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph; Najm, Habib N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin; Sargsyan, Khachik; Geraci, Gianluca; Eldred, Michael; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green’s function theory

Molecular Physics

Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.; Hermes, Matthew R.; Hirata, So

A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm−1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

More Details

Efficient Uncertainty Quantification in Stochastic Economic Dispatch

IEEE Transactions on Power Systems

Safta, Cosmin; Chen, Richard L.Y.; Najm, Habib N.; Pinar, Ali P.; Watson, Jean-Paul

Stochastic economic dispatch models address uncertainties in forecasts of renewable generation output by considering a finite number of realizations drawn from a stochastic process model, typically via Monte Carlo sampling. Accurate evaluations of expectations or higher order moments for quantities of interest, e.g., generating cost, can require a prohibitively large number of samples. We propose an alternative to Monte Carlo sampling based on polynomial chaos expansions. These representations enable efficient and accurate propagation of uncertainties in model parameters, using sparse quadrature methods. We also use Karhunen-Loève expansions for efficient representation of uncertain renewable energy generation that follows geographical and temporal correlations derived from historical data at each wind farm. Considering expected production cost, we demonstrate that the proposed approach can yield several orders of magnitude reduction in computational cost for solving stochastic economic dispatch relative to Monte Carlo sampling, for a given target error threshold.

More Details

Computational singular perturbation analysis of stochastic chemical systems with stiffness

Journal of Computational Physics

Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

More Details
Results 101–150 of 433
Results 101–150 of 433