Publications

Results 51–100 of 433

Search results

Jump to search filters

Geometry optimization speedup through a geodesic approach to internal coordinates

Journal of Chemical Physics

Hermes, Eric; Sargsyan, Khachik; Najm, Habib N.; Zador, Judit

We present a new geodesic-based method for geometry optimization in a basis set of redundant internal coordinates. Our method updates the molecular geometry by following the geodesic generated by a displacement vector on the internal coordinate manifold, which dramatically reduces the number of steps required to converge to a minimum. Our method can be implemented in any existing optimization code, requiring only implementation of derivatives of the Wilson B-matrix and the ability to numerically solve an ordinary differential equation.

More Details

Trajectory Optimization via Unsupervised Probabilistic Learning On Manifolds

Safta, Cosmin; Najm, Habib N.; Grant, Michael J.; Sparapany, Michael J.

This report investigates the use of unsupervised probabilistic learning techniques for the analysis of hypersonic trajectories. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. Using the diffusion coordinates on the graph of training samples, the probabilistic framework augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path-planing algorithm. In this framework the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-time. A 3DOF model was employed to generate optimal hypersonic trajectories that comprise the training datasets. The diffusion map algorithm identfied that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. In addition to the path-planing worflow we also propose an algorithm that utilizes the diffusion map coordinates along the manifold to label and possibly remove outlier samples from the training data. This algorithm can be used to both identify edge cases for further analysis as well as to remove them from the training set to create a more robust set of samples to be used for the path-planing process.

More Details

AEVmod – Atomic Environment Vector Module Documentation

Najm, Habib N.; Yang, Yoona

This report outlines the mathematical formulation for the atomic environment vector (AEV) construction used in the aevmod software package. The AEV provides a summary of the geometry of a molecule or atomic configuration. We also present the formulation for the analytical Jacobian of the AEV with respect to the atomic Cartesian coordinates. The software provides functionality for both the AEV and AEV-Jacobian, as well as the AEV-Hessian which is available via reliance on the third party library Sacado.

More Details

The origin of CEMA and its relation to CSP

Combustion and Flame

Goussis, Dimitris A.; Im, Hong G.; Najm, Habib N.; Paolucci, Samuel; Valorani, Mauro

There currently exist two methods for analysing an explosive mode introduced by chemical kinetics in a reacting process: the Computational Singular Perturbation (CSP) algorithm and the Chemical Explosive Mode Analysis (CEMA). CSP was introduced in 1989 and addressed both dissipative and explosive modes encountered in the multi-scale dynamics that characterize the process, while CEMA was introduced in 2009 and addressed only the explosive modes. It is shown that (i) the algorithmic tools incorporated in CEMA were developed previously on the basis of CSP and (ii) the examination of explosive modes has been the subject of CSP-based works, reported before the introduction of CEMA.

More Details

CSPlib - A Software Toolkit for the Analysis of Dynamical Systems and Chemical Kinetic Models

Diaz-Ibarra, Oscar H.; Kim, Kyungjoo; Safta, Cosmin; Najm, Habib N.

CSPlib is an open source software library for analyzing general ordinary differential equation (ODE) systems and detailed chemical kinetic ODE systems. It relies on the computational singular perturbation (CSP) method for the analysis of these systems. The software provides support for: General ODE models (gODE model class) for computing source terms and Jacobians for a generic ODE system; TChem model (ChemElemODETChem model class) for computing source term, Jacobian, other necessary chemical reaction data, as well as the rates of progress for a homogenous batch reactor using an elementary step detailed chemical kinetic reaction mechanism. This class relies on the TChem [2] library; A set of functions to compute essential elements of CSP analysis (Kernel class). This includes computations of the eigensolution of the Jacobian matrix, CSP basis vectors and co-vectors, time scales (reciprocals of the magnitudes of the Jacobian eigenvalues), mode amplitudes, CSP pointers, and the number of exhausted modes. This class relies on the Tines library; A set of functions to compute the eigensolution of the Jacobian matrix using Tines library GPU eigensolver; A set of functions to compute CSP indices (Index Class). This includes participation indices and both slow and fast importance indices.

More Details

TChem v2.0 - A Software Toolkit for the Analysis of Complex Kinetic Models

Safta, Cosmin; Kim, Kyungjoo; Diaz-Ibarra, Oscar H.; Najm, Habib N.

TChem is an open source software library for solving complex computational chemistry problems and analyzing detailed chemical kinetic models. The software provides support for: complex kinetic models for gas-phase and surface chemistry; thermodynamic properties based on NASA polynomials; species production/consumption rates; stable time integrator for solving stiff time ordinary differential equations; and, reactor models such as homogenous gas-phase ignition (with analytical Jacobian matrices), continuously stirred tank reactor, plug-flow reactor. This toolkit builds upon earlier versions that were written in C and featured tools for gas-phase chemistry only. The current version of the software was completely refactored in C++, uses an object-oriented programming model, and adopts Kokkos as its portability layer to make it ready for the next generation computing architectures i.e., multi/many core computing platforms with GPU accelerators. We have expanded the range of kinetic models to include surface chemistry and have added examples pertaining to Continuously Stirred Tank Reactors (CSTR) and Plug Flow Reactor (PFR) models to complement the homogenous ignition examples present in the earlier versions. To exploit the massive parallelism available from modern computing platforms, the current software interface is designed to evaluate samples in parallel, which enables large scale parametric studies, e.g. for sensitivity analysis and model calibration.

More Details

Transitional Markov Chain Monte Carlo Sampler in UQTk

Safta, Cosmin; Khalil, Mohammad; Najm, Habib N.

Transitional Markov Chain Monte Carlo (TMCMC) is a variant of a class of Markov Chain Monte Carlo algorithms known as tempering-based methods. In this report, the implementation of TMCMC in the Uncertainty Quantification Toolkit is investigated through the sampling of high-dimensional distributions, multi-modal distributions, and nonlinear manifolds. Furthermore, the Bayesian model evidence estimates obtained from TMCMC are tested on problems with known analytical solutions and shown to provide consistent results.

More Details

Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds

Journal of Computational Physics

Safta, Cosmin; Ghanem, R.G.; Huan, X.; Lacaze, G.; Oefelein, J.C.; Najm, Habib N.

We demonstrate, on a scramjet combustion problem, a constrained probabilistic learning approach that augments physics-based datasets with realizations that adhere to underlying constraints and scatter. The constraints are captured and delineated through diffusion maps, while the scatter is captured and sampled through a projected stochastic differential equation. The objective function and constraints of the optimization problem are then efficiently framed as non-parametric conditional expectations. Different spatial resolutions of a large-eddy simulation filter are used to explore the robustness of the model to the training dataset and to gain insight into the significance of spatial resolution on optimal design.

More Details

Effective construction of eigenvectors for a class of singular sparse matrices

Applied Mathematics Letters

Han, Xiaoying; Najm, Habib N.

Fundamental results and an efficient algorithm for constructing eigenvectors corresponding to non-zero eigenvalues of matrices with zero rows and/or columns are developed. The formulation is based on the relation between eigenvectors of such matrices and the eigenvectors of their submatrices after removing all zero rows and columns. While being easily implemented, the algorithm decreases the computation time needed for numerical eigenanalysis, and resolves potential numerical eigensolver instabilities.

More Details

Sparse low rank approximation of potential energy surfaces with applications in estimation of anharmonic zero point energies and frequencies

Journal of Mathematical Chemistry

Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.; Hirata, So

We propose a method that exploits sparse representation of potential energy surfaces (PES) on a polynomial basis set selected by compressed sensing. The method is useful for studies involving large numbers of PES evaluations, such as the search for local minima, transition states, or integration. We apply this method for estimating zero point energies and frequencies of molecules using a three step approach. In the first step, we interpret the PES as a sparse tensor on polynomial basis and determine its entries by a compressed sensing based algorithm using only a few PES evaluations. Then, we implement a rank reduction strategy to compress this tensor in a suitable low-rank canonical tensor format using standard tensor compression tools. This allows representing a high dimensional PES as a small sum of products of one dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate the product of sparse canonical low-rank representation of PES and Green’s function in the second-order diagrammatic vibrational many-body Green’s function theory (XVH2) for estimation of zero-point energies and frequencies. Numerical tests on molecules considered in this work suggest a more efficient scaling of computational cost with molecular size as compared to other methods.

More Details

Entropy-based closure for probabilistic learning on manifolds

Journal of Computational Physics

Safta, Cosmin; Soize, C.; Ghanem, R.; Huan, Xun H.; Vane, Z.P.; Oefelein, J.; Lacaze, G.; Najm, Habib N.; Tang, Q.; Chen, X.

In a recent paper, the authors proposed a general methodology for probabilistic learning on manifolds. The method was used to generate numerical samples that are statistically consistent with an existing dataset construed as a realization from a non-Gaussian random vector. The manifold structure is learned using diffusion manifolds and the statistical sample generation is accomplished using a projected Itô stochastic differential equation. This probabilistic learning approach has been extended to polynomial chaos representation of databases on manifolds and to probabilistic nonconvex constrained optimization with a fixed budget of function evaluations. The methodology introduces an isotropic-diffusion kernel with hyperparameter ε. Currently, ε is more or less arbitrarily chosen. In this paper, we propose a selection criterion for identifying an optimal value of ε, based on a maximum entropy argument. The result is a comprehensive, closed, probabilistic model for characterizing data sets with hidden constraints. This entropy argument ensures that out of all possible models, this is the one that is the most uncertain beyond any specified constraints, which is selected. Applications are presented for several databases.

More Details

Explicit time integration of the stiff chemical Langevin equations using computational singular perturbation

Journal of Chemical Physics

Han, Xiaoying; Valorani, Mauro; Najm, Habib N.

A stable explicit time-scale splitting algorithm for stiff chemical Langevin equations (CLEs) is developed, based on the concept of computational singular perturbation. The drift term of the CLE is projected onto basis vectors that span the fast and slow subdomains. The corresponding fast modes exhaust quickly, in the mean sense, and the system state then evolves, with a mean drift controlled by slow modes, on a random manifold. The drift-driven time evolution of the state due to fast exhausted modes is modeled algebraically as an exponential decay process, while that due to slow drift modes and diffusional processes is integrated explicitly. This allows time integration step sizes much larger than those required by typical explicit numerical methods for stiff stochastic differential equations. The algorithm is motivated and discussed, and extensive numerical experiments are conducted to illustrate its accuracy and stability with a number of model systems.

More Details

EGSim - a C++ Toolkit for Analysis of Power Grid Systems

Najm, Habib N.; Safta, Cosmin

We describe the load flow formulation and the solution algorithms available in the Electric power Grid Simulator (EGSim) software toolkit. EGSim contains tools aimed at simulating static load flow solutions for electric power grids. It parses power grid models described in IEEE Common Data Format, and generates solutions for the bus voltages and voltage angles, and real and reactive power values through the transmission lines. The software, written in C++, implements both Gauss-Seidel and Newton solution methods. Example results for the 118 bus models and 300 bus models are also presented.

More Details

Compressive sensing adaptation for polynomial chaos expansions

Journal of Computational Physics

Safta, Cosmin; Tsilifis, Panagiotis; Huan, Xun H.; Sargsyan, Khachik; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.; Ghanem, Roger G.

Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.

More Details

Embedded Model Error Representation for Bayesian Model Calibration

arXiv.org Repository

Huan, Xun H.; Sargsyan, Khachik; Najm, Habib N.

Model error estimation remains one of the key challenges in uncertainty quantification and predictive science. For computational models of complex physical systems, model error, also known as structural error or model inadequacy, is often the largest contributor to the overall predictive uncertainty. This work builds on a recently developed framework of embedded, internal model correction, in order to represent and quantify structural errors, together with model parameters,within a Bayesian inference context. We focus specifically on a Polynomial Chaos representation with additive modification of existing model parameters, enabling a non-intrusive procedure for efficient approximate likelihood construction, model error estimation, and disambiguation of model and data errors’ contributions to predictive uncertainty. The framework is demonstrated on several synthetic examples, as well as on a chemical ignition problem.

More Details

Estimating the joint distribution of rate parameters across multiple reactions in the absence of experimental data

Proceedings of the Combustion Institute

Casey, T.; Najm, Habib N.

A procedure for determining the joint uncertainty of Arrhenius parameters across multiple combustion reactions of interest is demonstrated. This approach is capable of constructing the joint distribution of the Arrhenius parameters arising from the uncertain measurements performed in specific target experiments without having direct access to the underlying experimental data. The method involves constructing an ensemble of hypothetical data sets with summary statistics consistent with the available information reported by the experimentalists, followed by a fitting procedure that learns the structure of the joint parameter density across reactions using this consistent hypothetical data as evidence. The procedure is formalized in a Bayesian statistical framework, employing maximum-entropy and approximate Bayesian computation methods and utilizing efficient Markov chain Monte Carlo techniques to explore data and parameter spaces in a nested algorithm. We demonstrate the application of the method in the context of experiments designed to measure the rates of selected chain reactions in the H2-O2 system and highlight the utility of this approach for revealing the critical correlations between the parameters within a single reaction and across reactions, as well as for maximizing consistency when utilizing rate parameter information in predictive combustion modeling of systems of interest.

More Details

Uncertainty propagation using conditional random fields in large-eddy simulations of scramjet computations

AIAA Scitech 2019 Forum

Huan, Xun H.; Safta, Cosmin; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.

The development of scramjet engines is crucial for attaining efficient and stable propulsion under hypersonic flight conditions. Design for well-performing scramjet engines requires accurate flow simulations in conjunction with uncertainty quantification (UQ). We advance computational methods in bringing together UQ and large-eddy simulations for scramjet computations, with a focus on the HIFiRE Direct Connect Rig combustor. In particular, we perform uncertainty propagation for spatially dependent field quantities of interest (QoIs) by treating them as random fields, and numerically compute low-dimensional Karhunen-Loève expansions (KLEs) using a finite number of simulations on non-uniform grids. We also describe a formulation and procedure to extract conditional KLEs that characterize the stochasticity induced by uncertain parameters at given designs. This is achieved by first building a single KLE for each QoI via samples drawn jointly from the parameter and design spaces, and then leverage polynomial chaos expansions to insert input dependencies into the KLE. The ability to access conditional KLEs will be immensely useful for subsequent efforts in design optimization under uncertainty as well as model calibration with field variable measurements.

More Details

Embedded model error representation for bayesianmodel calibration

International Journal for Uncertainty Quantification

Sargsyan, Khachik; Huan, Xun H.; Najm, Habib N.

Model error estimation remains one of the key challenges in uncertainty quantification and predictive science. For computational models of complex physical systems, model error, also known as structural error or model inadequacy, is often the largest contributor to the overall predictive uncertainty. This work builds on a recently developed frame- work of embedded, internal model correction, in order to represent and quantify structural errors, together with model parameters, within a Bayesian inference context.We focus specifically on a polynomial chaos representation with addi- tive modification of existing model parameters, enabling a nonintrusive procedure for efficient approximate likelihood construction, model error estimation, and disambiguation of model and data errors’ contributions to predictive uncer- tainty. The framework is demonstrated on several synthetic examples, as well as on a chemical ignition problem.

More Details

Enhancing model predictability for a scramjet using probabilistic learning on manifolds

AIAA Journal

Safta, Cosmin; Soize, Christian; Ghanem, Roger; Huan, Xun H.; Vane, Zachary P.; Oefelein, Joseph C.; Lacaze, Guilhem; Najm, Habib N.

The computational burden of a large-eddy simulation for reactive flows is exacerbated in the presence of uncertainty in flow conditions or kinetic variables. A comprehensive statistical analysis, with a sufficiently large number of samples, remains elusive. Statistical learning is an approach that allows for extracting more information using fewer samples. Such procedures, if successful, will greatly enhance the predictability of models in the sense of improving exploration and characterization of uncertainty due to model error and input dependencies, all while being constrained by the size of the associated statistical samples. In this paper, it is shown how a recently developed procedure for probabilistic learning on manifolds can serve to improve the predictability in a probabilistic framework of a scramjet simulation. The estimates of the probability density functions of the quantities of interest are improved together with estimates of the statistics of their maxima. It is also demonstrated how the improved statistical model adds critical insight to the performance of the model.

More Details

Enhancing statistical moment calculations for stochastic Galerkin solutions with Monte Carlo techniques

Journal of Computational Physics

Safta, Cosmin; Najm, Habib N.

In this work, we provide a method for enhancing stochastic Galerkin moment calculations to the linear elliptic equation with random diffusivity using an ensemble of Monte Carlo solutions. This hybrid approach combines the accuracy of low-order stochastic Galerkin and the computational efficiency of Monte Carlo methods to provide statistical moment estimates which are significantly more accurate than performing each method individually. The hybrid approach involves computing a low-order stochastic Galerkin solution, after which Monte Carlo techniques are used to estimate the residual. We show that the combined stochastic Galerkin solution and residual is superior in both time and accuracy for a one-dimensional test problem and a more computational intensive two-dimensional linear elliptic problem for both the mean and variance quantities.

More Details
Results 51–100 of 433
Results 51–100 of 433