Publications

Results 26–50 of 81

Search results

Jump to search filters

Engineering the Quantum Scientific Computing Open User Testbed

IEEE Transactions on Quantum Engineering

Clark, Susan M.; Lobser, Daniel L.; Revelle, Melissa R.; Yale, Christopher G.; Bossert, David B.; Grinevich, Ashlyn D.; Chow, Matthew N.; Hogle, Craig W.; Ivory, Megan K.; Pehr, Jessica; Salzbrenner, Bradley S.; Stick, Daniel L.; Sweatt, W.C.; Wilson, Joshua M.; Winrow, Edward G.; Maunz, Peter

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, the QSCOUT allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this article is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.

More Details

Detecting and tracking drift in quantum information processors

Nature Communications

Proctor, Timothy J.; Revelle, Melissa R.; Nielsen, Erik N.; Rudinger, Kenneth M.; Lobser, Daniel L.; Maunz, Peter; Blume-Kohout, Robin J.; Young, Kevin C.

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

More Details

Diagnosing and Destroying Non-Markovian Noise

Young, Kevin; Bartlett, Stephen; Blume-Kohout, Robin J.; Gamble, John K.; Lobser, Daniel L.; Maunz, Peter; Nielsen, Erik N.; Proctor, Timothy J.; Revelle, Melissa R.; Rudinger, Kenneth M.

Nearly every protocol used to analyze the performance of quantum information processors is based on an assumption that the errors experienced by the device during logical operations are constant in time and are insensitive to external contexts. This assumption is pervasive, rarely stated, and almost always wrong. Quantum devices that do behave this way are termed "Markovian:' but nearly every system we have ever probed has displayed drift or crosstalk or memory effects they are all non-Markovian. Strong non-Markovianity introduces spurious effects in characterization protocols and violates assumptions of the fault-tolerance threshold theorems. This SAND report details a three year laboratory-directed research and development (LDRD) project entitled, "Diagnosing and Destroying non-Markovian Noise in Quantum Information Processors." This program was initiated to build tools to study non-Markovian dynamics and quantum systems and develop robust methodologies for eliminating it. The program achieved a number of notable successes, including the first statistically rigorous protocol for identifying and characterizing drift in quantum systems, a formalism for modeling memory effects in quantum devices, and the successful suppression of drift in a Sandia trapped-ion quantum processor.

More Details

Jaqal the Quantum Assembly Language for QSCOUT

Landahl, Andrew J.; Lobser, Daniel L.; Morrison, Benjamin M.; Rudinger, Kenneth M.; Russo, Antonio R.; Van Der Wall, Jay W.; Maunz, Peter L.

QSCOUT is the Quantum Scientific Computing Open User Testbed, a trapped-ion quantum computer testbed realized at Sandia National Laboratories on behalf of the Department of Energy's Office of Science and its Advanced Scientific Computing Research (ASCR) program.

More Details
Results 26–50 of 81
Results 26–50 of 81