Publications

Results 51–75 of 106

Search results

Jump to search filters

Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519)

Alexander, Charles S.; Haill, Thomas A.; Dalton, Devon D.; Rovang, Dean C.; Lamppa, Derek C.

The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

More Details

2169 steel waveform experiments

Furnish, Michael D.; Alexander, Charles S.; Reinhart, William D.; Brown, Justin L.

In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

More Details

Dynamic response of a carbon fiber -epoxy composite subject to planar impact

ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials

Alexander, Charles S.

Unidirectional carbon fiber reinforced epoxy composite samples were tested to determine the response to one dimensional shock loading. The material tested had high fiber content (68% by volume) and low porosity. Wave speeds for shocks traveling along the carbon fibers are significantly higher than for those traveling transverse to the fibers or through the bulk epoxy. As a result, the dynamic material response is dependent on the relative shock - fiber orientation. Shocks traveling along the fiber direction in uniaxial samples travel faster and exhibit both elastic and plastic characteristics over the stress range tested; up to 15 GPa. Results detail the anisotropic material response which is governed by different mechanisms along each of the two principle directions in the composite.

More Details
Results 51–75 of 106
Results 51–75 of 106