Space rendezvous and proximity operations are increasing in numbers, enabling inspections, diagnostics, and maintenance of on-orbit systems. Because collision, loss of control, and unintended damage can impact the system under examination -- and at the extreme, cause system break-up and space debris -- the safety practices for rendezvous and proximity operations can have significant implications for national security. This study examines the applicability of the Always/Never surety framework, which was developed for United States nuclear weapons, as a model safety basis for unmanned space proximity operations. This unclassified framework has understandable safety approaches and principles and focuses on a system being always safenever unsafe. The authors consider that the adapting the framework might present a means for standardization across government and commerce, encouraging a consistent approach and a set of clarifying safety principles and applications for rendezvous and proximity operations. The framework also offers a consistent taxonomy, presents safety and reliability requirements organized by four environment categories, defines accident or abnormal conditions, contributes a strategy for identifying hostile and tactical environments, and enables decision-making for determining if conditions are safe for proximity space operations.
Efficiency in requirements engineering and management (REM) for complex hardware systems is desirable to reduce program impacts, such as schedule and budget. Sandia National Labs (SNL) investigated external state-of-the-practice REM to capture insights, recommendations, and best practices from external entities on several REM topics. Twenty-one at-will participants contributed responses to closed- and open-ended questions. The results were synthesized and are provided herein. The results help SNL and others to understand where its practices are current; what trends, approaches, or processes in REM might be beneficial if implemented or introduced; what challenges might be avoided; where efficiencies might be realized; and which practices are still maturing or evolving in industry and academia, so that SNL can stay abreast of these developments.
The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.
The purpose of this review was to provide insights and information to Sandia National Laboratories' (SNL) Education Council on the state of technical education and training at SNL in order to address the concern that a change in philosophy surrounding education had occurred. To accomplish this, the status of current and past technical training and education programs were compared, and significant changes at SNL were assessed for their impact on education and training. Major changes in education and training are in the advertisement of course offerings, the course delivery methods, and the funding mechanisms for student and instructor time as well as course costs. The significant changes in SNL which influenced technical training and education are the considerable increase in mandatory or compliance training, a fundamental shift in SNL's management structure from an institutional structure to a more business-like, project-budgeted structure, and the change in SNL's mission at the end of the Cold War. These changes contributed to less time for technical training, reduction of training funds, elimination of some training, and a Service Center approach to paying for training. Most importantly, the overall combined effect has resulted in a shift from a strategic to a tactical training approach. The Corporate Training Department (CTD) has maneuvered to accommodate these changes and keep abreast of constantly changing needs.
In this continued study, the microstructural evolution and peel strength as a function of thermal aging were evaluated for four Sn-Ag solders deposited on double layered Ag-Pt metallization. Additionally, activation energies for intermetallic growth over the temperature range of 134 to 190{degrees}C were obtained through thickness measurements of the Ag-Sn intermetallic that formed at the solder-metallization interface. It was found that Bi-containing solders yielded higher activation energies for the intermetallic growth, leading to thicker intermetallic layers at 175 and 190{degrees}C for times of 542 and 20.5 hrs, respectively, than the solders free of Bi. Complete reaction of the solder with the metallization occurred and lower peel strengths were measured on the Bi-containing solders. In all solder systems, a Ag-Sn intermetallic thickness of greater than {approximately}7 {mu}m contributed to lower peel strength values. The Ag-Sn binary eutectic composition and the Ag-Sn-Cu ternary eutectic composition solders yielded lower activation energies for intermetallic formation, less microstructural change with time, and higher peel strengths; these solder systems were resilient to the effects of temperatures up to 175{degrees}C. Accelerated isothermal aging studies provide useful criteria for recommendation of materials systems. The Sn-Ag and Sn-Ag-Cu eutectic compositions should be considered for future service life and reliability studies based upon their performance in this study.
Under a cooperative research and development agreement with General Motors Corporation, lead-free solder systems including the flux, metallization, and solder are being developed for high temperature, underhood applications. Six tin-rich solders, five silver-rich metallizations, and four fluxes were screened using an experimental matrix whereby every combination was used to make sessile drops via hot plate or Heller oven processing. The contact angle, sessile drop appearance, and in some instances the microstructure was evaluated to determine combinations that would yield contact angles of less than 30{degrees}, well-formed sessile drops, and fine, uniform microstructures. Four solders, one metallization, and one flux were selected and will be used for further aging and mechanical property studies.
Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.
The iron content, phase constitution, and microstructure of electrodeposited iron-zinc alloy (EZA) coatings, deposited from chloride baths, is described for as-deposited and heat-treated conditions of coatings containing bulk iron contents of 6, 8, 10, and 13 w/o. The observed influence of current density upon iron content, which in turn influences the phase constitution and microstructure of the coatings, is reported. The microstructure, composed of non-equilibrium phases that have nanometer grain sizes, is illustrated and described with respect to iron content, crystallography, and morphology. As-deposited {eta} phase coatings undergo transformations through a sequence of metastable phases when heated. The sequence of phase transformations varies with iron content, but the mechanisms of phase transformation from the as-deposited eta phase to the metastable G phase was found to be similar in 6, 8, and 10 w/o Fe coatings. Microstructural, compositional, and crystallographic changes associated with this phase transformation are discussed.