Publications

Results 51–54 of 54

Search results

Jump to search filters

Hybrid Intrusion Detection System Design for Distributed Energy Resource Systems

2019 IEEE CyberPELS, CyberPELS 2019

Chavez, Adrian R.; Lai, Christine F.; Jacobs, Nicholas J.; Hossain-McKenzie, Shamina S.; Jones, Christian B.; Johnson, Jay B.; Summers, Adam

The integration of communication-enabled grid-support functions in distributed energy resources (DER) and other smart grid features will increase the U.S. power grid's exposure to cyber-physical attacks. Unwanted changes in DER system data and control signals can damage electrical infrastructure and lead to outages. To protect against these threats, intrusion detection systems (IDSs) can be deployed, but their implementation presents a unique set of challenges in industrial control systems (ICSs), New approaches need to be developed that not only sense cyber anomalies, but also detect undesired physical system behaviors. For DER systems, a combination of cyber security data and power system and control information should be collected by the IDS to provide insight into the nature of an anomalous event. This allows joint forensic analysis to be conducted to reveal any relationships between the observed cyber and physical events. In this paper, we propose a hybrid IDS approach that monitors and evaluates both physical and cyber network data in DER systems, and present a series of scenarios to demonstrate how our approach enables the cyber-physical IDS to achieve more robust identification and mitigation of malicious events on the DER system.

More Details

Use and Testing of a Wind Turbine for the Supply of Balancing Reserves and Wide-Area Grid Stability

Guttromson, Ross G.; Gravagne, Ian; Berg, Jonathan C.; White, Jonathan; Wilches-Bernal, Felipe; Summers, Adam; Schoenwald, David A.

This report documents the use of wind turbine inertial energy for the supply of two specific electric power grid services; system balancing and real power modulation to improve grid stability. Each service is developed to require zero net energy consumption. Grid stability was accomplished by modulating the real power output of the wind turbine at a frequency and phase associated with wide-area modes. System balancing was conducted using a grid frequency signal that was high-pass filtered to ensure zero net energy. Both services used Phasor Measurement Units (PMUs) as their primary source of system data in a feedforward control (for system balancing) and feedback control (for system stability).

More Details
Results 51–54 of 54
Results 51–54 of 54