Publications

Results 1–50 of 154

Search results

Jump to search filters

Modeling–Experiment–Theory Analysis of Reactions Initiated from Cl + Methyl Formate

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Cho, Jaeyoung; Rosch, Daniel; Tao, Yujie; Osborn, David L.; Klippenstein, Stephen J.; Sheps, Leonid; Sivaramakrishnan, Raghu

Methyl formate (MF; CH3OCHO) is the smallest representative of esters, which are common components of biodiesel. The present study characterizes the thermal dissociation kinetics of the radicals formed by H atom abstraction from MF—CH3OCO and CH2OCHO—through a combination of modeling, experiment, and theory. For the experimental effort, excimer laser photolysis of Cl2 was used as a source of Cl atoms to initiate reactions with MF in the gas phase. Time-resolved species profiles of MF, Cl2, HCl, CO2, CH3, CH3Cl, CH2O, and CH2ClOCHO were measured and quantified using photoionization mass spectrometry at temperatures of 400–750 K and 10 Torr. The experimental data were simulated using a kinetic model, which was informed by ab initio-based theoretical kinetics calculations and included chlorine chemistry and secondary reactions of radical decomposition products. Here, we calculated the rate coefficients for the H-abstraction reactions Cl + MF → HCl + CH3OCO (R1a) and Cl + MF → HCl + CH2OCHO (R1b): k1a,theory = 6.71 × 10–15·T1.14·exp(—606/T) cm3/molecule·s; k1b,theory = 4.67 × 10–18·T2.21·exp(—245/T) cm3/molecule·s over T = 200–2000 K. Electronic structure calculations indicate that the barriers to CH3OCO and CH2OCHO dissociation are 13.7 and 31.6 kcal/mol and lead to CH3 + CO2 (R3) and CH2O + HCO (R5), respectively. The master equation-based theoretical rate coefficients are k3,theory (P = ∞) = 2.94 × 109·T1.21·exp(—6209/T) s–1 and k5,theory (P = ∞) = 8.45 × 108·T1.39·exp(—15132/T) s–1 over T = 300–1500 K. The calculated branching fractions into R1a and R1b and the rate coefficient for R5 were validated by modeling of the experimental species time profiles and found to be in excellent agreement with theory. Additionally, we found that the bimolecular reactions CH2OCHO + Cl, CH2OCHO + Cl2, and CH3 + Cl2 were critical to accurately model the experimental data and constrain the kinetics of MF-radicals. Inclusion of the kinetic parameters determined in this study showed a significant impact on combustion simulations of larger methyl esters, which are considered as biodiesel surrogates.

More Details

Bimolecular Reaction of Methyl-Ethyl-Substituted Criegee Intermediate with SO2

Journal of Physical Chemistry A

Zou, Meijun; Liu, Tianlin; Vansco, Michael F.; Sojdak, Christopher A.; Markus, Charles R.; Almeida, Raybel; Au, Kendrew; Sheps, Leonid; Osborn, David L.; Winiberg, Frank A.F.; Percival, Carl J.; Taatjes, Craig A.; Klippenstein, Stephen J.; Lester, Marsha I.; Caravan, Rebecca L.

Methyl-ethyl-substituted Criegee intermediate (MECI) is a four-carbon carbonyl oxide that is formed in the ozonolysis of some asymmetric alkenes. MECI is structurally similar to the isoprene-derived methyl vinyl ketone oxide (MVK-oxide) but lacks resonance stabilization, making it a promising candidate to help us unravel the effects of size, structure, and resonance stabilization that influence the reactivity of atmospherically important, highly functionalized Criegee intermediates. We present experimental and theoretical results from the first bimolecular study of MECI in its reaction with SO2, a reaction that shows significant sensitivity to the Criegee intermediate structure. Using multiplexed photoionization mass spectrometry, we obtain a rate coefficient of (1.3 ± 0.3) × 10-10 cm3 s-1 (95% confidence limits, 298 K, 10 Torr) and demonstrate the formation of SO3 under our experimental conditions. Through high-level theory, we explore the effect of Criegee intermediate structure on the minimum energy pathways for their reactions with SO2 and obtain modified Arrhenius fits to our predictions for the reaction of both syn and anti conformers of MECI with SO2 (ksyn = 4.42 × 1011 T-7.80exp(−1401/T) cm3 s-1 and kanti = 1.26 × 1011 T-7.55exp(−1397/T) cm3 s-1). Our experimental and theoretical rate coefficients (which are in reasonable agreement at 298 K) show that the reaction of MECI with SO2 is significantly faster than MVK-oxide + SO2, demonstrating the substantial effect of resonance stabilization on Criegee intermediate reactivity.

More Details

OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions

Journal of the American Chemical Society

Liu, Tianlin; Elliott, Sarah N.; Zou, Meijun; Vansco, Michael F.; Sojdak, Christopher A.; Markus, Charles R.; Almeida, Raybel; Au, Kendrew; Sheps, Leonid; Osborn, David L.; Percival, Carl J.; Taatjes, Craig A.; Caravan, Rebecca L.; Klippenstein, Stephen J.; Lester, Marsha I.

Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).

More Details

Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine Via a 1,2-Insertion Mechanism

Journal of Physical Chemistry A

Ramasesha, Krupa; Osborn, David L.; Taatjes, Craig A.

The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.

More Details

A New Approach to Fundamental Mechanism Discovery in Polymer Upcycling

Sheps, Leonid; Osborn, David L.; Hansen, Nils

We present a new experimental methodology for detailed experimental investigations of depolymerization reactions over solid catalysts. This project aims to address a critical need in fundamental research on chemical upcycling of polymers – the lack of rapid, sensitive, isomerselective probing techniques for the detection of reaction intermediates and products. Our method combines a heterogeneous catalysis reactor for the study of multiphase (gas/polymer melt/solid) systems, coupled to a vacuum UV photoionization time-of-flight mass spectrometer. This apparatus draws on our expertise in probing complex gas-phase chemistry and enables highthroughput, detailed chemical speciation measurements of the gas phase above the catalyst, providing valuable information on the heterogeneous catalytic reactions. Using this approach, we investigated the depolymerization of high-density polyethylene (HDPE) over Ir-doped zeolite catalysts. We showed that the product distribution was dominated by low-molecular weight alkenes with terminal C=C double bonds and revealed the presence of many methyl-substituted alkenes and alkanes, suggesting extensive methyl radical chemistry. In addition, we investigated the fundamental reactivity of model oligomer molecules n-butane and isobutane over ZSM-5 zeolites. We demonstrated the first direct detection of methyl radical intermediates, confirming the key role of methyl in zeolite-catalyzed activation of alkanes. Our results show the potential of this experimental method to achieve deep insight into the complex depolymerization reactions and pave the way for detailed mechanistic studies, leading to increased fundamental understanding of key processes in chemical upcycling of polymers.

More Details

Primary photodissociation mechanisms of pyruvic acid on S1: observation of methylhydroxycarbene and its chemical reaction in the gas phase

Physical Chemistry Chemical Physics. PCCP

Samanta, Bibek R.; Fernando, Ravin; Roesch, Daniel; Reisler, Hanna; Osborn, David L.

Pyruvic acid, a representative alpha-keto carboxylic acid, is one of the few organic molecules destroyed in the troposphere by solar radiation rather than by reactions with free radicals. To date, only its stable final products were identified, often with contribution from secondary chemistry, making it difficult to elucidate photodissociation mechanisms following excitation to the lowest singlet excited-state (S1) and the role of the internal hydrogen bond in the most-stable Tc conformer. Using multiplexed photoionization mass spectrometry we report the first direct experimental evidence, via the observation of singlet methylhydroxycarbene (MHC) following 351 nm excitation, supporting the decarboxylation mechanism previously proposed. Decarboxylation to MHC + CO2 represents 97–100% of product branching at 351 nm. We observe vinyl alcohol and acetaldehyde, which we attribute to isomerization of MHC. We also observe a 3 ± 2% yield of the Norrish Type I photoproducts CH3CO + DOCO, but only from d1-pyruvic acid. At 4 Torr pressure, we measure a photodissociation quantum yield of $1.0^{+0}_{–0.4}$, consistent with IUPAC recommendations. However, our measured product branching fractions disagree with IUPAC. In light of previous calculations, these results support a mechanism in which hydrogen transfer on the S1 excited state occurs at least partially by tunneling, in competition with intersystem crossing to the T1 state. Here, we present the first evidence of a bimolecular reaction of MHC in the gas phase, where MHC reacts with pyruvic acid to produce a C4H8O2 product. This observation implies that some MHC produced from pyruvic acid in Earth's troposphere will be stabilized and participate in chemical reactions with O2 and H2O, and should be considered in atmospheric modeling.

More Details

Reaction mechanisms of a cyclic ether intermediate: Ethyloxirane

International Journal of Chemical Kinetics

Christianson, Matthew G.; Doner, Anna C.; Davis, Matthew M.; Koritzke, Alanna L.; Turney, Justin M.; Schaefer, Henry F.; Sheps, Leonid; Osborn, David L.; Taatjes, Craig A.; Rotavera, Brandon

Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-̇QOOH) or from reactions of HOȮ with alkenes. Ethyloxirane is one of four alkyl-substituted cyclic ether isomers produced as an intermediate from n-butane oxidation. While rate coefficients for β-̇QOOH → ethyloxirane + ȮH are reported extensively, subsequent reaction mechanisms of the cyclic ether are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe ethyloxirane consumption by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present work provides fundamental insight on reaction mechanisms of ethyloxirane in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred from the detection of products during chlorine atom-initiated oxidation experiments using multiplexed photoionization mass spectrometry conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, calculations of stationary point energies were conducted using the ccCA-PS3 composite method on ̇R + O2 potential energy surfaces for the four ethyloxiranyl radical isomers, which produced barrier heights for 24 reaction pathways. In addition to products from ̇QOOH → cyclic ether + ȮH and ̇R + O2 → conjugate alkene + HOȮ, both of which were significant pathways and are prototypical to alkane oxidation, other species were identified from ring-opening of both ethyloxiranyl and ̇QOOH radicals. The latter occurs when the unpaired electron is localized on the ether group, causing the initial ̇QOOH structure to ring-open and form a resonance-stabilized ketohydroperoxide-type radical. The present work provides the first analysis of ethyloxirane oxidation chemistry, which reveals that consumption pathways are complex and may require an expansion of submechanisms to increase the fidelity of chemical kinetics mechanisms.

More Details

Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol

ACS Catalysis

Zhou, Bo; Huang, Erxiong; Almeida, Raybel; Gurses, Sadi; Ungar, Alexander; Zetterberg, Johan; Kulkarni, Ambarish; Kronawitter, Coleman X.; Osborn, David L.; Hansen, Nils; Frank, Jonathan H.

Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.

More Details

Insertion products in the reaction of carbonyl oxide Criegee intermediates with acids: Chloro(hydroperoxy)methane formation from reaction of CH2OO with HCl and DCl

Molecular Physics

Taatjes, Craig A.; Caravan, Rebecca L.; Winiberg, Frank A.F.; Zuraski, Kristen; Au, Kendrew; Sheps, Leonid; Osborn, David L.; Vereecken, Luc; Percival, Carl J.

The reactions of carbonyl oxide Criegee intermediates with acids proceed predominantly by an insertion mechanism. We characterise the products from one of the simplest reactions of carbonyl oxides with inorganic acids, CH2OO + hydrogen chloride, which occurs via a 1,2-insertion in the H–Cl bond. Reactions of both HCl and DCl isotopologues yield product signal at the mass of the insertion product chloro(hydroperoxy)methane and a dissociative ionisation peak at the mass of the protonated (or deuteronated) Criegee intermediate. The isotopic composition of the insertion product has been measured for reaction mixtures where both HCl isotopologues are present, and the H/D ratio of the product is consistently higher (by a factor of 1.6 ± 0.3) than that of the reactants. This isotope selectivity in the products has smaller uncertainty than the ratio of measured rate coefficients and suggests a normal (k H > k D) kinetic isotope effect in the reaction. Theoretical kinetics calculations predict a small normal kinetic isotope effect for the overall reaction (k H / k D = 1.35 at 20 Torr N2 and k H / k D = 1.2 at 1 atm N2) but predict a substantial inverse kinetic isotope effect (k D > k H) for the stabilisation fraction, in disagreement with the experimental observation.

More Details

Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: Experiment and theory

Physical Chemistry Chemical Physics

Vansco, Michael F.; Caravan, Rebecca L.; Pandit, Shubhrangshu; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Bhagde, Trisha; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Klippenstein, Stephen J.; Taatjes, Craig A.; Lester, Marsha I.

Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2CO+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.

More Details

Isomer-Dependent Reaction Mechanisms of Cyclic Ether Intermediates: cis-23-Dimethyloxirane and trans-23-Dimethyloxirane

International Journal of Chemical Kinetics

Doner, Anna C.; Davis, Matthew M.; Koritzke, Alanna L.; Christianson, Matthew G.; Turney, Justin M.; Schaefer, Henry F.; Sheps, Leonid; Osborn, David L.; Taatjes, Craig A.; Rotavera, Brandon

Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-˙QOOH) or from reactions of HÒO with alkenes. The cis- and trans-isomers of 2,3-dimethyloxirane are intermediates of n-butane oxidation, and while rate coefficients for β-˙QOOH → 2,3-dimethyloxirane + OH are reported extensively, subsequent reaction mechanisms of the cyclic ethers are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe the consumption of 2,3-dimethyloxirane by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present research examines the isomerdependence of 2,3-dimethyloxirane reaction mechanisms in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred via the detection of products from Cl-initiated oxidation of both cis-2,3-dimethyloxirane and trans-2,3-dimethyloxirane using multiplexed photoionization mass spectrometry (MPIMS). The experiments were conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, the enthalpies of stationary points on the ˙R + O2 surfaces were computed at the ccCA-PS3 level of theory. In total, 28 barrier heights were computed on the 2,3-dimethyloxiranylperoxy surfaces. Two notable aspects are low-lying pathways that form resonance-stabilized ketohydroperoxide-type radicals caused by ˙QOOH ring-opening when the unpaired electron is localized adjacent to the ether group, and cis-trans isomerization of ˙R and ˙QOOH radicals, via inversion, which enable reaction pathways otherwise restricted by stereochemistry. Several species were identified in the MPIMS experiments from ring opening of 2,3-dimethyloxiranyl radicals. Neither of the two conjugate alkene isomers prototypical of ˙R + O2 reactions were detected. Products were also identified from decomposition of ketohydroperoxide-type radicals. The present work provides the first analysis of 2,3-dimethyloxirane oxidation chemistry and reveals that consumption pathways are complex and require the expansion of submechanisms in chemical kinetics mechanisms.

More Details

Looking at the bigger picture: Identifying the photoproducts of pyruvic acid at 193 nm

Journal of Chemical Physics

Samanta, Bibek R.; Fernando, Ravin; Roesch, Daniel; Reisler, Hanna; Osborn, David L.

Here, photodissociation of pyruvic acid (PA) was studied in the gas-phase at 193 nm using two complementary techniques. The time-sliced velocity map imaging arrangement was used to determine kinetic energy release distributions of fragments and estimate dissociation timescales. The multiplexed photoionization mass spectrometer setup was used to identify and quantify photoproducts, including isomers and free radicals, by their mass-to-charge ratios, photoionization spectra, and kinetic time profiles. Using these two techniques, it is possible to observe the major dissociation products of PA photodissociation: CO2, CO, H, OH, HCO, CH2CO, CH3CO, and CH3. Acetaldehyde and vinyl alcohol are minor primary photoproducts at 193 nm, but products that are known to arise from their unimolecular dissociation, such as HCO, H2CO, and CH4, are identified and quantified. A multivariate analysis that takes into account the yields of the observed products and assumes a set of feasible primary dissociation reactions provides a reasonable description of the photoinitiated chemistry of PA despite the necessary simplifications caused by the complexity of the dissociation. These experiments offer the first comprehensive description of the dissociation pathways of PA initiated on the S3 excited state. Most of the observed products and yields are rationalized on the basis of three reaction mechanisms: (i) decarboxylation terminating in CO2 + other primary products (~50%); (ii) Norrish type I dissociation typical of carbonyls (~30%); and (iii) O—H and C—H bond fission reactions generating the H atom (~10%). The analysis shows that most of the dissociation reactions create more than two products. This observation is not surprising considering the high excitation energy (~51 800 cm–1) and fairly low energy required for dissociation of PA. We find that two-body fragmentation processes yielding CO2 are minor, and the expected, unstable primary co-fragment, methylhydroxycarbene, is not observed because it probably undergoes fast secondary dissociation and/or isomerization. Norrish type I dissociation pathways generate OH and only small yields of CH3CO and HOCO, which have low dissociation energies and further decompose via three-body fragmentation processes. Experiments with d1-PA (CH3COCOOD) support the interpretations. The dissociation on S3 is fast, as indicated by the products’ recoil angular anisotropy, but the roles of internal conversion and intersystem crossing to lower states are yet to be determined.

More Details

Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates

Journal of Physical Chemistry A

Vansco, Michael F.; Caravan, Rebecca L.; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Khan, M.A.H.; Shallcross, Dudley E.; Taatjes, Craig A.; Lester, Marsha I.

Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.

More Details

To Boldly Look Where No One Has Looked Before: Identifying the Primary Photoproducts of Acetylacetone

Journal of Physical Chemistry A

Antonov, Ivan; Voronova, Krisztina; Chen, Ming W.; Sztaray, Balint; Hemberger, Patrick; Bodi, Andras; Osborn, David L.; Sheps, Leonid

We investigate the gas-phase photochemistry of the enolone tautomer of acetylacetone (pentane-2,4-dione) following S2(ππ∗) → S0 excitation at λ = 266 and 248 nm, using three complementary time-resolved spectroscopic methods. Contrary to earlier reports, which claimed to study one-photon excitation of acetylacetone and found OH and CH3 as the only important gas-phase products, we detect 15 unique primary photoproducts and demonstrate that five of them, including OH and CH3, arise solely by multiphoton excitation. We assign the one-photon products to six photochemical channels and show that the most significant pathway is phototautomerization to the diketone form, which is likely an intermediate in several of the other product channels. Furthermore, we measure the equilibrium constant of the tautomerization of the enolone to diketone on S0 from 320 to 600 K and extract ΔH = 4.1 ± 0.3 kcal·mol-1 and ΔS = 6.8 ± 0.5 cal·mol-1·K-1 using a van't Hoff analysis. We correct the C-OH bond dissociation energy in acetylacetone, previously determined as 90 kcal·mol-1 by theory and experiment, to a new value of 121.7 kcal·mol-1. Our experiments and electronic structure calculations provide evidence that some of the product channels, including phototautomerization, occur on S0, while others likely occur on excited triplet surfaces. Although the large oscillator strength of the S2 → S0 transition results from the (ππ∗) excitation of the C=C - C=O backbone, similar to conjugated polyenes, the participation of triplets in the dissociation pathways of acetylacetone appears to have more in common with ketone photochemistry.

More Details

Product Detection of the CH Radical Reactions with Ammonia and Methyl-Substituted Amines

Journal of Physical Chemistry A

Bourgalais, Jeremy; Caster, Kacee L.; Durif, Olivier; Osborn, David L.; Le Picard, Sebastien D.; Goulay, Fabien

Reactions of the methylidyne (CH) radical with ammonia (NH 3 ), methylamine (CH 3 NH 2 ), dimethylamine ((CH 3 ) 2 NH), and trimethylamine ((CH 3 ) 3 N) have been investigated under multiple collision conditions at 373 K and 4 Torr. The reaction products are detected by using soft photoionization coupled to orthogonal acceleration time-of-flight mass spectrometry at the Advanced Light Source (ALS) synchrotron. Kinetic traces are employed to discriminate between CH reaction products and products from secondary or slower reactions. Branching ratios for isomers produced at a given mass and formed by a single reaction are obtained by fitting the observed photoionization spectra to linear combinations of pure compound spectra. The reaction of the CH radical with ammonia is found to form mainly imine, HN?CH 2 , in line with an addition-elimination mechanism. The singly methyl-substituted imine is detected for the CH reactions with methylamine, dimethylamine, and trimethylamine. Dimethylimine isomers are formed by the reaction of CH with dimethylamine, while trimethylimine is formed by the CH reaction with trimethylamine. Overall, the temporal profiles of the products are not consistent with the formation of aminocarbene products in the reaction flow tube. In the case of the reactions with methylamine and dimethylamine, product formation is assigned to an addition-elimination mechanism similar to that proposed for the CH reaction with ammonia. However, this mechanism cannot explain the products detected by the reaction with trimethylamine. A C - H insertion pathway may become more probable as the number of methyl groups increases.

More Details

Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids

Environmental Science and Technology

Taatjes, Craig A.; Khan, M.A.H.; Eskola, Arkke J.; Percival, Carl J.; Osborn, David L.; Wallington, Timothy J.; Shallcross, Dudley E.

The reaction of perfluorooctanoic acid with the smallest carbonyl oxide Criegee intermediate, CH 2 OO, has been measured and is very rapid, with a rate coefficient of (4.9 ± 0.8) × 10 -10 cm 3 s -1 , similar to that for reactions of Criegee intermediates with other organic acids. Evidence is shown for the formation of hydroperoxymethyl perfluorooctanoate as a product. With such a large rate coefficient, reaction with Criegee intermediates can be a substantial contributor to atmospheric removal of perfluorocarboxylic acids. However, the atmospheric fates of the ester product largely regenerate the initial acid reactant. Wet deposition regenerates the perfluorocarboxylic acid via condensed-phase hydrolysis. Gas-phase reaction with OH is expected principally to result in formation of the acid anhydride, which also hydrolyzes to regenerate the acid, although a minor channel could lead to destruction of the perfluorinated backbone.

More Details

Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere

Nature Communications

Osborn, David L.; Shaw, Miranda F.; Sztaray, Balint; Whalley, Lisa K.; Heard, Dwayne E.; Jordan, Meredith J.T.; Kable, Scott H.

Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tautomerizes to vinyl alcohol under atmospherically relevant pressures of nitrogen, in the actinic wavelength range, λ = 300-330 nm, with measured quantum yields of 2-25%. Recent theoretical kinetics studies show hydroxyl-initiated oxidation of vinyl alcohol produces formic acid. Adding these pathways to an atmospheric chemistry box model (Master Chemical Mechanism) demonstrates increased formic acid concentrations by a factor of ∼1.7 in the polluted troposphere and a factor of ∼3 under pristine conditions. Incorporating this mechanism into the GEOS-Chem 3D global chemical transport model reveals an estimated 7% contribution to worldwide formic acid production, with up to 60% of the total modeled formic acid production over oceans arising from photo-tautomerization.

More Details

The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol

Nature Communications

Caravan, Rebecca L.; Khan, M.A.H.; Zador, Judit; Sheps, Leonid; Antonov, Ivan O.; Rotavera, Brandon; Ramasesha, Krupa; Au, Kendrew; Chen, Ming W.; Roesch, Daniel; Osborn, David L.; Fittschen, Christa; Schoemaecker, Coralie; Duncianu, Marius; Grira, Asma; Dusanter, Sebastien; Tomas, Alexandre; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A.

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces – ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex – which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

More Details

Radical Thermometers, Thermochemistry, and Photoelectron Spectra: A Photoelectron Photoion Coincidence Spectroscopy Study of the Methyl Peroxy Radical

Journal of Physical Chemistry Letters

Voronova, Krisztina; Ervin, Kent M.; Torma, Krisztian G.; Hemberger, Patrick; Bodi, Andras; Gerber, Thomas; Osborn, David L.; Sztaray, Balint

We investigated the simplest alkylperoxy radical, CH3OO, formed by reacting photolytically generated CH3 radicals with O2, using the new combustion reactions followed by photoelectron photoion coincidence (CRF-PEPICO) apparatus at the Swiss Light Source. Modeling the experimental photoion mass-selected threshold photoelectron spectrum using Franck-Condon simulations including transitions to triplet and singlet cationic states yielded the adiabatic ionization energy of 10.265 ± 0.025 eV. Dissociative photoionization of CH3OO generates the CH3+ fragment ion at the appearance energy of 11.164 ± 0.010 eV. Combining these two values with ΔfH0K°(CH3) yields ΔfH0K°(CH3OO) = 22.06 ± 0.97 kJ mol-1, reducing the uncertainty of the previously determined value by a factor of 5. Statistical simulation of the CH3OO breakdown diagram provides a molecular thermometer of the free radical's internal temperature, which we measured to be 330 ± 30 K.

More Details

Direct kinetics study of CH2OO + methyl vinyl ketone and CH2OO + methacrolein reactions and an upper limit determination for CH2OO + CO reaction

Physical Chemistry Chemical Physics

Eskola, Arkke J.; Dontgen, Malte; Rotavera, Brandon; Caravan, Rebecca L.; Welz, Oliver; Savee, John D.; Osborn, David L.; Shallcross, Dudley E.; Percival, Carl J.; Taatjes, Craig A.

Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-α (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH2I2 in the presence of excess O2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 ± 0.4) × 10-13 cm3 s-1 and k(CH2OO + MACR) = (4.4 ± 1.0) × 10-13 cm3 s-1, where the stated ±2σ uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) < 2 × 10-16 cm3 s-1. For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) < 2 × 10-14 cm3 s-1 is obtained.

More Details

Study of low temperature chlorine atom initiated oxidation of methyl and ethyl butyrate using synchrotron photoionization TOF-mass spectrometry

Physical Chemistry Chemical Physics

Osborn, David L.; Czekner, Joseph; Taatjes, Craig A.; Meloni, Giovanni

The initial oxidation products of methyl butyrate (MB) and ethyl butyrate (EB) are studied using a time- and energy-resolved photoionization mass spectrometer. Reactions are initiated with Cl radicals in an excess of oxygen at a temperature of 550 K and a pressure of 6 Torr. Ethyl crotonate is the sole isomeric product that is observed from concerted HO2-elimination from initial alkylperoxy radicals formed in the oxidation of EB. Analysis of the potential energy surface of each possible alkylperoxy radical shows that the CH3CH(OO)CH2C(O)OCH2CH3 (RγO2) and CH3CH2CH(OO)C(O)OCH2CH3 (RβO2) radicals are the isomers that could undergo this concerted HO2-elimination. Two lower-mass products (formaldehyde and acetaldehyde) are observed in both methyl and ethyl butyrate reactions. Secondary reactions of alkylperoxy radicals with HO2 radicals can decompose into the aforementioned products and smaller radicals. These pathways are the likely explanation for the formation of formaldehyde and acetaldehyde.

More Details

Formation of low-volatility products in reactions of carbonyl oxide criegee intermediates

15th Conference of the International Society of Indoor Air Quality and Climate, INDOOR AIR 2018

Caravan, Rebecca L.; Eskola, Arkke J.; Antonov, Ivan O.; Winiberg, Frank A.F.; Rotavera, Brandon; Ramasesha, Krupa; Sheps, Leonid; Osborn, David L.; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A.

Direct kinetic and product studies of Criegee Intermediates reveal insertion and addition mechanisms for multiple co-reactant species. Observation of these highly oxygenated low volatility products indicate the potential role of Criegee Intermediate chemistry in molecular weight growth, and subsequently, secondary organic aerosol formation.

More Details

Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

Annual Review of Physical Chemistry

Osborn, David L.

Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

More Details

Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: A probe to investigate chain-branching mechanism

Physical Chemistry Chemical Physics

Eskola, Arkke J.; Antonov, Ivan O.; Sheps, Leonid; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

Product formation, in particular ketohydroperoxide formation and decomposition, were investigated in time-resolved, Cl-atom initiated neopentane oxidation experiments in the temperature range 550-675 K using a photoionization time-of-flight mass spectrometer. Ionization light was provided either by Advanced Light Source tunable synchrotron radiation or ∼10.2 eV fixed energy radiation from a H2-discharge lamp. Experiments were performed both at 1-2 atm pressure using a high-pressure reactor and also at ∼9 Torr pressure employing a low-pressure reactor for comparison. Because of the highly symmetric structure of neopentane, ketohydroperoxide signal can be attributed to a 3-hydroperoxy-2,2-dimethylpropanal isomer, i.e. from a γ-ketohydroperoxide (γ-KHP). The photoionization spectra of the γ-KHP measured at low- and high pressures and varying oxygen concentrations agree well with each other, further supporting they originate from the single isomer. Measurements performed in this work also suggest that the "Korcek" mechanism may play an important role in the decomposition of 3-hydroperoxy-2,2-dimethylpropanal, especially at lower temperatures. However, at higher temperatures where γ-KHP decomposition to hydroxyl radical and oxy-radical dominates, oxidation of the oxy-radical yields a new important channel leading to acetone, carbon monoxide, and OH radical. Starting from the initial neopentyl + O2 reaction, this channel releases altogether three OH radicals. A strongly temperature-dependent reaction product is observed at m/z = 100, likely attributable to 2,2-dimethylpropanedial.

More Details

Products of Criegee intermediate reactions with NO2: Experimental measurements and tropospheric implications

Faraday Discussions

Caravan, Rebecca L.; Khan, M.A.H.; Rotavera, Brandon; Papajak, Ewa; Antonov, Ivan O.; Chen, Ming-Wei; Au, Kendrew; Chao, Wen; Osborn, David L.; Lin Jr., Jimmin; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A.

The reactions of Criegee intermediates with NO2 have been proposed as a potentially significant source of the important nighttime oxidant NO3, particularly in urban environments where concentrations of ozone, alkenes and NOx are high. However, previous efforts to characterize the yield of NO3 from these reactions have been inconclusive, with many studies failing to detect NO3. In the present work, the reactions of formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO) with NO2 are revisited to further explore the product formation over a pressure range of 4-40 Torr. NO3 is not observed; however, temporally resolved and [NO2]-dependent signal is observed at the mass of the Criegee-NO2 adduct for both formaldehyde- and acetaldehyde-oxide systems, and the structure of this adduct is explored through ab initio calculations. The atmospheric implications of the title reaction are investigated through global modelling.

More Details

Reaction mechanisms of R and QOOH radicals produced in low-temperature oxidation of butanone

10th U.S. National Combustion Meeting

Caravan, Rebecca L.; Rotavera, Brandon; Papajak, Ewa; Antonov, Ivan O.; Ramasesha, Krupa; Zador, Judit; Osborn, David L.; Taatjes, Craig A.

Product formation from the low-temperature oxidation of two isotopologues of the proposed biofuel butanone was studied via multiplexed photoionization mass spectrometry (MPIMS) at 500 and 700 K to elucidate product branching ratios for R and QOOH pathways. Products were identified and branching ratios quantified for a number of species, with the aid of ab initio calculations. Chain-inhibiting C-C β-scission of R and select chain-propagating channels are discussed. Whilst methyl vinyl ketone and HOO, (from chain-inhibiting pathways) were found to be major products, chain propagation pathways leading to carbonyl and cyclic ether species following OH-elimination from QOOH were found to be pertinent at both temperatures. At 700 K, R C-C β-scission was significantly enhanced, as evident in the branching ratios, however the formation of QOOH-derived chain-propagation products remained relevant.

More Details

The reaction of Criegee intermediate CH2OO with water dimer: Primary products and atmospheric impact

Physical Chemistry Chemical Physics

Sheps, Leonid; Rotavera, Brandon; Eskola, Arkke J.; Osborn, David L.; Taatjes, Craig A.; Au, Kendrew; Shallcross, Dudley E.; Khan, M.A.H.; Percival, Carl J.

The rapid reaction of the smallest Criegee intermediate, CH2OO, with water dimers is the dominant removal mechanism for CH2OO in the Earth's atmosphere, but its products are not well understood. This reaction was recently suggested as a significant source of the most abundant tropospheric organic acid, formic acid (HCOOH), which is consistently underpredicted by atmospheric models. However, using time-resolved measurements of reaction kinetics by UV absorption and product analysis by photoionization mass spectrometry, we show that the primary products of this reaction are formaldehyde and hydroxymethyl hydroperoxide (HMHP), with direct HCOOH yields of less than 10%. Incorporating our results into a global chemistry-transport model further reduces HCOOH levels by 10-90%, relative to previous modeling assumptions, which indicates that the reaction CH2OO + water dimer by itself cannot resolve the discrepancy between the measured and predicted HCOOH levels.

More Details

Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments

Journal of Physical Chemistry A

Osborn, David L.; Bourgalais, J.; Spencer, Michael; Goulay, F.; Le Picard, S.D.

Product detection studies of C(3P) atom reactions with butene (C4H8) isomers (but-1-ene, cis-but-2-ene, trans-but-2-ene) are carried out in a flow tube reactor at 353 K and 4 Torr under multiple collision conditions. Ground state carbon atoms are generated by 248 nm laser photolysis of tetrabromomethane, CBr4, in a buffer of helium. Thermalized reaction products are detected using synchrotron tunable VUV photoionization and time-of-flight mass spectrometry. The temporal profiles of the detected ions are used to discriminate products from side or secondary reactions. For the C(3P) + trans-but-2-ene and C(3P) + cis-but-2-ene reactions, various isomers of C4H5 and C5H7 are identified as reaction products formed via CH3 and H elimination. Assuming equal ionization cross sections for all C4H5 and C5H7 isomers, C4H5:C5H7 branching ratios of 0.63:1 and 0.60:1 are derived for the C(3P) + trans-but-2-ene and the C(3P) + cis-but-2-ene reactions, respectively. For the C(3P) + but-1-ene reaction, two reaction channels are observed: the H-elimination channel, leading to the formation of the ethylpropargyl isomer, and the C3H3 + C2H5 channel. Assuming equal ionization cross sections for ethylpropargyl and C3H3 radicals, a branching ratio of 1:0.95 for the C3H3 + C2H5 and H + ethylpropargyl channels is derived. The experimental results are compared to previous H atom branching ratios and used to propose the most likely mechanisms for the reaction of ground state carbon atoms with butene isomers. (Chemical Equation Presented).

More Details

Resonance stabilization effects on ketone autoxidation: Isomer-Specific cyclic ether and ketohydroperoxide formation in the low-Temperature (400−625 k) oxidation of diethyl ketone

Journal of Physical Chemistry A

Scheer, Adam M.; Eskola, Arkke J.; Osborn, David L.; Sheps, Leonid; Taatjes, Craig A.

The pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)2CO], 2,2,4,4-d4-DEK [d4-DEK; (CH3CD2)2CO], and 1,1,1,5,5,5-d6-DEK [d6-DEK; (CD3CH2)2CO] is studied at 8 torr and 1−2 atm and from 400−625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, RP) or secondary (3-pentan-on-2-yl, RS) radicals, which in turn react with O2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OH channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary RS with O2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (RP), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O2 concentrations and higher pressures (1−2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologues indicates the favored pathway produces a γ-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from 450 to 575 K before intensity drops significantly at 625 K. The KHP time profile also shows a peak followed by a gradual depletion for the extent of experiment. Several tertiary products exhibit a slow accumulation in coincidence with the observed KHP decay. These products can be associated with decomposition of KHP by β-scission pathways or via isomerization of a γ-KHP into a cyclic peroxide intermediate (Korcek mechanism). The oxidation of d4-DEK, where kinetic isotope effects disfavor γ-KHP formation, shows greatly reduced KHP formation and associated signatures from KHP decomposition products.

More Details

Breaking through the false coincidence barrier in electron-ion coincidence experiments

Journal of Chemical Physics

Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; Bodi, Andras; Voronova, Krisztina; Sztaray, Balint

Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2-3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.

More Details
Results 1–50 of 154
Results 1–50 of 154