Publications

16 Results
Skip to search filters

Experimental and computational studies of Criegee intermediate reactions with NH3 and CH3NH2

Physical Chemistry Chemical Physics

Chhantyal-Pun, Rabi; Shannon, Robin J.; Tew, David P.; Caravan, Rebecca L.; Duchi, Marta; Wong, Callum; Ingham, Aidan; Feldman, Charlotte; McGillen, Max R.; Khan, M.A.; Antonov, Ivan O.; Rotavera, Brandon; Ramasesha, Krupa; Osborn, David L.; Taatjes, Craig A.; Percival, Carl J.; Shallcross, Dudley E.; Orr-Ewing, Andrew J.

Ammonia and amines are emitted into the troposphere by various natural and anthropogenic sources, where they have a significant role in aerosol formation. Here, we explore the significance of their removal by reaction with Criegee intermediates, which are produced in the troposphere by ozonolysis of alkenes. Rate coefficients for the reactions of two representative Criegee intermediates, formaldehyde oxide (CH2OO) and acetone oxide ((CH3)2COO) with NH3 and CH3NH2 were measured using cavity ring-down spectroscopy. Temperature-dependent rate coefficients, k(CH2OO + NH3) = (3.1 ± 0.5) × 10-20T2exp(1011 ± 48/T) cm3 s-1 and k(CH2OO + CH3NH2) = (5 ± 2) × 10-19T2exp(1384 ± 96/T) cm3 s-1 were obtained in the 240 to 320 K range. Both the reactions of CH2OO were found to be independent of pressure in the 10 to 100 Torr (N2) range, and average rate coefficients k(CH2OO + NH3) = (8.4 ± 1.2) × 10-14 cm3 s-1 and k(CH2OO + CH3NH2) = (5.6 ± 0.4) × 10-12 cm3 s-1 were deduced at 293 K. An upper limit of ≤2.7 × 10-15 cm3 s-1 was estimated for the rate coefficient of the (CH3)2COO + NH3 reaction. Complementary measurements were performed with mass spectrometry using synchrotron radiation photoionization giving k(CH2OO + CH3NH2) = (4.3 ± 0.5) × 10-12 cm3 s-1 at 298 K and 4 Torr (He). Photoionization mass spectra indicated production of NH2CH2OOH and CH3N(H)CH2OOH functionalized organic hydroperoxide adducts from CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. Ab initio calculations performed at the CCSD(T)(F12∗)/cc-pVQZ-F12//CCSD(T)(F12∗)/cc-pVDZ-F12 level of theory predicted pre-reactive complex formation, consistent with previous studies. Master equation simulations of the experimental data using the ab initio computed structures identified submerged barrier heights of -2.1 ± 0.1 kJ mol-1 and -22.4 ± 0.2 kJ mol-1 for the CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. The reactions of NH3 and CH3NH2 with CH2OO are not expected to compete with its removal by reaction with (H2O)2 in the troposphere. Similarly, losses of NH3 and CH3NH2 by reaction with Criegee intermediates will be insignificant compared with reactions with OH radicals.

More Details

The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol

Nature Communications

Caravan, Rebecca L.; Khan, M.A.; Zador, Judit Z.; Sheps, Leonid S.; Antonov, Ivan O.; Rotavera, Brandon; Ramasesha, Krupa R.; Au, Kendrew; Chen, Ming W.; Rösch, Daniel; Osborn, David L.; Fittschen, Christa; Schoemaecker, Coralie; Duncianu, Marius; Grira, Asma; Dusanter, Sebastien; Tomas, Alexandre; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A.

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces – ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex – which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

More Details

Investigating the Tropospheric Chemistry of Acetic Acid Using the Global 3-D Chemistry Transport Model, STOCHEM-CRI

Journal of Geophysical Research: Atmospheres

Khan, M.A.; Lyons, Kyle; Chhantyal-Pun, Rabi; McGillen, Max R.; Caravan, Rebecca L.; Taatjes, Craig A.; Orr-Ewing, Andrew J.; Percival, Carl J.; Shallcross, Dudley E.

Acetic acid (CH3COOH) is one of the most abundant carboxylic acids in the troposphere. In the study, the tropospheric chemistry of CH3COOH is investigated using the 3-D global chemistry transport model, STOCHEM-CRI. The highest mixing ratios of surface CH3COOH are found in the tropics by as much as 1.6 ppb in South America. The model predicts the seasonality of CH3COOH reasonably well and correlates with some surface and flight measurement sites, but the model drastically underpredicts levels in urban and midlatitudinal regions. The possible reasons for the underprediction are discussed. The simulations show that the lifetime and global burden of CH3COOH are 1.6–1.8 days and 0.45–0.61 Tg, respectively. The reactions of the peroxyacetyl radical (CH3CO3) with the hydroperoxyl radical (HO2) and other organic peroxy radicals (RO2) are found to be the principal sources of tropospheric CH3COOH in the model, but the model-measurement discrepancies suggest the possible unknown or underestimated sources which can contribute large fractions of the CH3COOH burden. The major sinks of CH3COOH in the troposphere are wet deposition, dry deposition, and OH loss. However, the reaction of CH3COOH with Criegee intermediates is proposed to be a potentially significant chemical loss process of tropospheric CH3COOH that has not been previously accounted for in global modeling studies. Inclusion of this loss process reduces the tropospheric CH3COOH level significantly which can give even larger discrepancies between model and measurement data, suggesting that the emissions inventory and the chemical production sources of CH3COOH are underpredicted even more so in current global models.

More Details

Criegee intermediates and their impacts on the troposphere

Environmental Science: Processes and Impacts

Khan, M.A.H.; Percival, C.J.; Caravan, Rebecca L.; Taatjes, Craig A.; Shallcross, D.E.

Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 104 cm-3 to 1 × 105 cm-3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found to be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO2 to form SO3, which can go on to form a significant amount of H2SO4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. The sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.

More Details

Direct kinetics study of CH2OO + methyl vinyl ketone and CH2OO + methacrolein reactions and an upper limit determination for CH2OO + CO reaction

Physical Chemistry Chemical Physics

Eskola, Arkke J.; Döntgen, Malte; Rotavera, Brandon; Caravan, Rebecca L.; Welz, Oliver; Savee, John D.; Osborn, David L.; Shallcross, Dudley E.; Percival, Carl J.; Taatjes, Craig A.

Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-α (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH2I2 in the presence of excess O2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 ± 0.4) × 10-13 cm3 s-1 and k(CH2OO + MACR) = (4.4 ± 1.0) × 10-13 cm3 s-1, where the stated ±2σ uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) < 2 × 10-16 cm3 s-1. For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) < 2 × 10-14 cm3 s-1 is obtained.

More Details

Reaction mechanisms of R and QOOH radicals produced in low-temperature oxidation of butanone

10th U.S. National Combustion Meeting

Caravan, Rebecca L.; Rotavera, Brandon; Papajak, Ewa; Antonov, Ivan O.; Ramasesha, Krupa R.; Zador, Judit Z.; Osborn, David L.; Taatjes, Craig A.

Product formation from the low-temperature oxidation of two isotopologues of the proposed biofuel butanone was studied via multiplexed photoionization mass spectrometry (MPIMS) at 500 and 700 K to elucidate product branching ratios for R and QOOH pathways. Products were identified and branching ratios quantified for a number of species, with the aid of ab initio calculations. Chain-inhibiting C-C β-scission of R and select chain-propagating channels are discussed. Whilst methyl vinyl ketone and HOO, (from chain-inhibiting pathways) were found to be major products, chain propagation pathways leading to carbonyl and cyclic ether species following OH-elimination from QOOH were found to be pertinent at both temperatures. At 700 K, R C-C β-scission was significantly enhanced, as evident in the branching ratios, however the formation of QOOH-derived chain-propagation products remained relevant.

More Details

Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: Tetrahydropyran and cyclohexane

Proceedings of the Combustion Institute

Rotavera, Brandon R.; Savee, John D.; Antonov, Ivan O.; Caravan, Rebecca L.; Sheps, Leonid S.; Osborn, David L.; Zador, Judit Z.; Taatjes, Craig A.

Lignocellulosic-derived biofuels represent an important part of sustainable transportation en- ergy and often contain oxygenated functional groups due to the mono- and polysaccharide content in cellulose and hemicellulose. The yields of conjugate alkene + HO2 formation in low-temperature tetrahydropyran oxidation were studied and the influence of oxygen heteroatoms in cyclic hydrocarbons on the associated chain-termination pathways stemming from R + O2 were examined. Relative to the initial radical concentration the trend in conjugate alkene branching fraction showed monotonic positive temperature dependence in both cyclohexane and tetrahydropyran except for tetrahydropyran at 10 torr where increasing the temperature to 700 K caused a decrease. Conjugate alkene branching fractions measured at 1520 torr for cyclohexane and tetrahydropyran followed monotonic positive temperature dependence. In contrast to the results at higher temperature where ring-opening of tetrahydropyranyl radicals interrupted R + O2chemistry and reduces the formation of conjugate alkenes branching fractions measured below 700 K were higher in tetrahydropyran compared to cyclohexane at 10 torr.

More Details
16 Results
16 Results