Publications

Results 1901–1925 of 9,998

Search results

Jump to search filters

Geometric mapping of tasks to processors on parallel computers with mesh or torus networks

IEEE Transactions on Parallel and Distributed Systems

Deveci, Mehmet; Devine, Karen D.; Laros, James H.; Taylor, Mark A.; Rajamanickam, Sivasankaran R.; Catalyurek, Umit V.

We present a new method for reducing parallel applications’ communication time by mapping their MPI tasks to processors in a way that lowers the distance messages travel and the amount of congestion in the network. Assuming geometric proximity among the tasks is a good approximation of their communication interdependence, we use a geometric partitioning algorithm to order both the tasks and the processors, assigning task parts to the corresponding processor parts. In this way, interdependent tasks are assigned to “nearby” cores in the network. We also present a number of algorithmic optimizations that exploit specific features of the network or application to further improve the quality of the mapping. We specifically address the case of sparse node allocation, where the nodes assigned to a job are not necessarily located in a contiguous block nor within close proximity to each other in the network. However, our methods generalize to contiguous allocations as well, and results are shown for both contiguous and non-contiguous allocations. We show that, for the structured finite difference mini-application MiniGhost, our mapping methods reduced communication time up to 75 percent relative to MiniGhost’s default mapping on 128K cores of a Cray XK7 with sparse allocation. For the atmospheric modeling code E3SM/HOMME, our methods reduced communication time up to 31% on 16K cores of an IBM BlueGene/Q with contiguous allocation.

More Details

Higher-moment buffered probability

Optimization Letters

Kouri, Drew P.

In stochastic optimization, probabilities naturally arise as cost functionals and chance constraints. Unfortunately, these functions are difficult to handle both theoretically and computationally. The buffered probability of failure and its subsequent extensions were developed as numerically tractable, conservative surrogates for probabilistic computations. In this manuscript, we introduce the higher-moment buffered probability. Whereas the buffered probability is defined using the conditional value-at-risk, the higher-moment buffered probability is defined using higher-moment coherent risk measures. In this way, the higher-moment buffered probability encodes information about the magnitude of tail moments, not simply the tail average. We prove that the higher-moment buffered probability is closed, monotonic, quasi-convex and can be computed by solving a smooth one-dimensional convex optimization problem. These properties enable smooth reformulations of both higher-moment buffered probability cost functionals and constraints.

More Details

A Guide to Solar Power Forecasting using ARMA Models

Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019

Singh, Bismark S.; Pozo, David

In this short article, we summarize a step-by-step methodology to forecast power output from a photovoltaic solar generator using hourly auto-regressive moving average (ARMA) models. We illustrate how to build an ARMA model, to use statistical tests to validate it, and construct hourly samples. The resulting model inherits nice properties for embedding it into more sophisticated operation and planning models, while at the same time showing relatively good accuracy. Additionally, it represents a good forecasting tool for sample generation for stochastic energy optimization models.

More Details

Compatible Particle Discretizations (Final LDRD Report)

Bochev, Pavel B.; Bosler, Peter A.; Kuberry, Paul A.; Perego, Mauro P.; Peterson, Kara J.; Trask, Nathaniel A.

This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.

More Details

Prediction and Inference of Multi-scale Electrical Properties of Geomaterials

Weiss, Chester J.; Beskardes, G.D.; van Bloemen Waanders, Bart G.

Motivated by the need for improved forward modeling and inversion capabilities of geophysical response in geologic settings whose fine--scale features demand accountability, this project describes two novel approaches which advance the current state of the art. First is a hierarchical material properties representation for finite element analysis whereby material properties can be prescribed on volumetric elements, in addition to their facets and edges. Hence, thin or fine--scaled features can be economically represented by small numbers of connected edges or facets, rather than 10's of millions of very small volumetric elements. Examples of this approach are drawn from oilfield and near--surface geophysics where, for example, electrostatic response of metallic infastructure or fracture swarms is easily calculable on a laptop computer with an estimated reduction in resource allocation by 4 orders of magnitude over traditional methods. Second is a first-ever solution method for the space--fractional Helmholtz equation in geophysical electromagnetics, accompanied by newly--found magnetotelluric evidence supporting a fractional calculus representation of multi-scale geomaterials. Whereas these two achievements are significant in themselves, a clear understanding the intermediate length scale where these two endmember viewpoints must converge remains unresolved and is a natural direction for future research. Additionally, an explicit mapping from a known multi-scale geomaterial model to its equivalent fractional calculus representation proved beyond the scope of the present research and, similarly, remains fertile ground for future exploration.

More Details

Incremental Interval Assignment (IIA) for Scalable Mesh Preparation

Mitchell, Scott A.

Interval Assignment (IA) means selecting the number of mesh edges for each CAD curve. IIA is a discrete algorithm over integers. A priority queue iteratively selects compatible sets of intervals to increase in lock-step by integers. In contrast, the current capability in Cubit is floating-point Linear Programming with Branch-and-Bound for integerization (BBIA).

More Details

Almost optimal classical approximation algorithms for a quantum generalization of max-cut

Leibniz International Proceedings in Informatics, LIPIcs

Gharibian, Sevag; Parekh, Ojas D.

Approximation algorithms for constraint satisfaction problems (CSPs) are a central direction of study in theoretical computer science. In this work, we study classical product state approximation algorithms for a physically motivated quantum generalization of Max-Cut, known as the quantum Heisenberg model. This model is notoriously difficult to solve exactly, even on bipartite graphs, in stark contrast to the classical setting of Max-Cut. Here we show, for any interaction graph, how to classically and efficiently obtain approximation ratios 0.649 (anti-feromagnetic XY model) and 0.498 (anti-ferromagnetic Heisenberg XYZ model). These are almost optimal; we show that the best possible ratios achievable by a product state for these models is 2/3 and 1/2, respectively.

More Details

Dragonfly-Inspired Algorithms for Intercept Trajectory Planning

Chance, Frances S.

Dragonflies are known to be highly successful hunters (achieving 90-95% success rate in nature) that implement a guidance law like proportional navigation to intercept their prey. This project tested the hypothesis that dragonflies are able to implement proportional navigation using prey-image translation on their eyes. The model dragonfly presented here calculates changes in pitch and yaw to maintain the prey's image at a designated location (the fovea) on a two-dimensional screen (the model's eyes ). When the model also uses self-knowledge of its own maneuvers as an error signal to adjust the location of the fovea, its interception trajectory becomes equivalent to proportional navigation. I also show that this model can also be applied successfully (in a limited number of scenarios) against maneuvering prey. My results provide a proof-of-concept demonstration of the potential of using the dragonfly nervous system to design a robust interception algorithm for implementation on a man-made system.

More Details

Semi-local Density Functional Approximations for Bulk, Surface, and Confinement Physics

Cangi, Attila C.; Sagredo, Francisca S.; Decolvenaere, Elizabeth; Mattsson, Ann E.

Due to its balance of accuracy and computational cost, density functional theory has become the method of choice for computing the electronic structure and related properties of materials. However, present-day semi-local approximations to the exchange-correlation energy of density functional theory break down for materials containing d and f electrons. In this report we summarize the results of our research efforts within the LDRD 200202 titled "Making density functional theory work for all materials" in addressing this issue. Our efforts are grouped into two research thrusts. In the first thrust, we develop an exchange-correlation functional (BSC functional) within the subsystem functional formalism. It enables us to capture bulk, surface, and confinement physics with a single, semi-local exchange-correlation functional in density functional theory calculations. We present the analytical properties of the BSC functional and demonstrate that the BSC functional is able to capture confinement physics more accurately than standard semi-local exchange-correlation functionals. The second research thrust focusses on developing a database for transition metal binary compounds. The database consists of materials properties (formation energies, ground-state energies, lattice constants, and elastic constants) of 26 transition metal elements and 89 transition metal alloys. It serves as a reference for benchmarking computational models (such as lower-level modeling methods and exchange-correlation functionals). We expect that our database will significantly impact the materials science community. We conclude with a brief discussion on the future research directions and impact of our results.

More Details
Results 1901–1925 of 9,998
Results 1901–1925 of 9,998