Publications

Results 2701–2750 of 9,998

Search results

Jump to search filters

The Portals 4.2 Network Programming Interface

Barrett, Brian W.; Brightwell, Ronald B.; Grant, Ryan E.; Hemmert, Karl S.; Laros, James H.; Wheeler, Kyle; Riesen, Rolf; Hoefler, Torsten; Maccabe, Arthur B.; Hudson, Trammell

This report presents a specification for the Portals 4 network programming interface. Portals 4 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded systems. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities.

More Details

Metrics and Benchmarks for Quantum Processors: State of Play

Blume-Kohout, Robin J.; Young, Kevin C.

A compelling narrative has taken hold as quantum computing explodes into the commercial sector: Quantum computing in 2018 is like classical computing in 1965. In 1965 Gordon Moore wrote his famous paper about integrated circuits, saying: "At present, [minimum cost] is reached when 50 components are used per circuit. But... the complexity for minimum component costs has increased at a rate of roughly a factor of two per year... by 1975, the number of components per integrated circuit for minimum cost will be 65,000." This narrative is both appealing (we want to believe that quantum computing will follow the incredibly successful path of classical computing!) and plausible (2018 saw IBM, Intel, and Google announce 50-qubit integrated chips). But it is also deeply misleading. Here is an alternative: Quantum computing in 2018 is like classical computing in 1938. In 1938, John Atanasoff and Clifford Berry built the very first electronic digital computer. It had no program, and was not Turing-complete. Vacuum tubes — the standard "bit" for 20 years — were still 5 years in the future. ENIAC and the achievement of "computational supremacy" (over hand calculation) wouldn't arrive for 8 years, despite the accelerative effect of WWII. Integrated circuits and the information age were more than 20 years away. Neither of these analogies is perfect. Quantum computing technology is more like 1938, while the level of funding and excitement suggest 1965 (or later!). But the point of the cautionary analogy to 1938 is simple: Quantum computing in 2018 is a research field. It is far too early to establish metrics or benchmarks for performance. The best role for neutral organizations like IEEE is to encourage and shape research into metrics and benchmarks, so as to be ready when they become necessary. This white paper presents the evidence and reasoning for this claim. We explain what it means to say that quantum computing is a "research field", and why metrics and benchmarks for quantum processors also constitute a research field. We discuss the potential for harmful consequences of prematurely establishing standards or frameworks. We conclude by suggesting specific actions that IEEE or similar organizations can take to accelerate the development of good metrics and benchmarks for quantum computing.

More Details

Characterization of radiation damage in TiO2 using molecular dynamics simulations

Modelling and Simulation in Materials Science and Engineering

Cowen, Benjamin J.; El-Genk, Mohamed S.

Molecular dynamics simulations are carried out to characterize irradiation effects in TiO2 rutile, for wide ranges of temperatures (300-900 K) and primary knock-on atom (PKA) energies (1-10 keV). The number of residual defects decreases with increased temperature and decreased PKA energy, but is independent of PKA type. In the ballistic phase, more oxygen than titanium defects are produced, however, the primary residual defects are titanium vacancies and interstitials. Defect clustering depends on the PKA energy, temperature, and defect production. For some 10 keV PKAs, the largest cluster of vacancies at the peak of the ballistic phase and after annealing has up to ≈1200 and 100 vacancies, respectively. For the 10 keV PKAs at 300 K, the energy storage, primarily in residual Ti vacancies and interstitials, is estimated at 140-310 eV. It decreases with increased temperature to as little as 5-180 eV at 900 K. Selected area electron diffraction patterns and radial distribution functions confirm that although localized amorphous regions form during the ballistic phase, TiO2 regains full crystallinity after annealing.

More Details

Inexact Methods for Symmetric Stochastic Eigenvalue Problems

SIAM/ASA Journal on Uncertainty Quantification

Lee, Kookjin L.; Sousedik, Bedrich

We study two inexact methods for solutions of random eigenvalue problems in the context of spectral stochastic finite elements. In particular, given a parameter-dependent, symmetric matrix operator, the methods solve for eigenvalues and eigenvectors represented using polynomial chaos expansions. Both methods are based on the stochastic Galerkin formulation of the eigenvalue problem and they exploit its Kronecker-product structure. The first method is an inexact variant of the stochastic inverse subspace iteration [B. Sousedfk, H. C. Elman, SIAM/ASA Journal on Uncertainty Quantification 4(1), pp. 163-189, 2016]. The second method is based on an inexact variant of Newton iteration. In both cases, the problems are formulated so that the associated stochastic Galerkin matrices are symmetric, and the corresponding linear problems are solved using preconditioned Krylov subspace methods with several novel hierarchical preconditioners. The accuracy of the methods is compared with that of Monte Carlo and stochastic collocation, and the effectiveness of the methods is illustrated by numerical experiments.

More Details

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance

Proceedings of the International Joint Conference on Neural Networks

Green, Sam G.; Vineyard, Craig M.; Koc, Cetin K.

Deep neural networks (DNN) now outperform competing methods in many academic and industrial domains. These high-capacity universal function approximators have recently been leveraged by deep reinforcement learning (RL) algorithms to obtain impressive results for many control and decision making problems. During the past three years, research toward pruning, quantization, and compression of DNNs has reduced the mathematical, and therefore time and energy, requirements of DNN-based inference. For example, DNN optimization techniques have been developed which reduce storage requirements of VGG-16 from 552MB to 11.3MB, while maintaining the full-model accuracy for image classification. Building from DNN optimization results, the computer architecture community is taking increasing interest in exploring DNN hardware accelerator designs. Based on recent deep RL performance, we expect hardware designers to begin considering architectures appropriate for accelerating these algorithms too. However, it is currently unknown how, when, or if the 'noise' introduced by DNN optimization techniques will degrade deep RL performance. This work measures these impacts, using standard OpenAI Gym benchmarks. Our results show that mathematically optimized RL policies can perform equally to full-precision RL, while requiring substantially less computation. We also observe that different optimizations are better suited than others for different problem domains. By beginning to understand the impacts of mathematical optimizations on RL policy performance, this work serves as a starting point toward the development of low power or high performance deep RL accelerators.

More Details

Hole Spin Qubits in Germanium

Luhman, Dwight R.; Lu, Tzu-Ming L.; Hardy, Will H.; Maurer, Leon M.

Holes in germanium-rich heterostructures provide a compelling alternative for achieving spin based qubits compared to traditional approaches such as electrons in silicon. In this project, we addressed the question of whether holes in Ge/SiGe quantum wells can be confined into laterally defined quantum dots and made into qubits. Through this effort, we successfully fabricated and operated single-metal-layer quantum dot devices in Ge/SiGe in multiple devices. For single quantum dots, we measured the capacitances of the quantum dot to the surface electrodes and find that they reasonably compare to expected values based on the electrode dimensions, suggested that we have formed a lithographic quantum dot. We also compare the results to detailed self-consistent calculations of the expected potential. Finally, we demonstrate, for the first time, a double quantum dot in the Ge/SiGe material system.

More Details

Preliminary Results on Applying Nonparametric Clustering and Bayesian Consensus Clustering Methods to Multimodal Data

Chen, Maximillian G.; Darling, Michael C.; Stracuzzi, David J.

In this report, we present preliminary research into nonparametric clustering methods for multi-source imagery data and quantifying the performance of these models. In many domain areas, data sets do not necessarily follow well-defined and well-known probability distributions, such as the normal, gamma, and exponential. This is especially true when combining data from multiple sources describing a common set of objects (which we call multimodal analysis), where the data in each source can follow different distributions and need to be analyzed in conjunction with one another. This necessitates nonparametric density estimation methods, which allow the data to better dictate the distribution of the data. One prominent example of multimodal analysis is multimodal image analysis, when we analyze multiple images taken using different radar systems of the same scene of interest. We develop uncertainty analysis methods, which are inherent in the use of probabilistic models but often not taken advance of, to assess the performance of probabilistic clustering methods used for analyzing multimodal images. This added information helps assess model performance and how much trust decision-makers should have in the obtained analysis results. The developed methods illustrate some ways in which uncertainty can inform decisions that arise when designing and using machine learning models.

More Details

Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys

Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Najm, H.N.; Riegner, David; Windl, Wolfgang

This study explores a Bayesian calibration framework for the RAMPAGE alloy potential model for Cu-Ni and Cu-Zr systems, respectively. In RAMPAGE potentials, it is proposed that once calibrated potentials for individual elements are available, the inter-species interactions can be described by fitting a Morse potential for pair interactions with three parameters, while densities for the embedding function can be scaled by two parameters from the elemental densities. Global sensitivity analysis tools were employed to understand the impact each parameter has on the MD simulation results. A transitional Markov Chain Monte Carlo algorithm was used to generate samples from the multimodal posterior distribution consistent with the discrepancy between MD simulation results and DFT data. For the Cu-Ni system the posterior predictive tests indicate that the fitted interatomic potential model agrees well with the DFT data, justifying the basic RAMPAGE assumptions. For the Cu-Zr system, where the phase diagram suggests more complicated atomic interactions than in the case of Cu-Ni, the RAMPAGE potential captured only a subset of the DFT data. The resulting posterior distribution for the 5 model parameters exhibited several modes, with each mode corresponding to specific simulation data and a suboptimal agreement with the DFT results.

More Details

4th Kokkos Bootcamp [Poster]

Trott, Christian R.; Shipman, Galen; Lopez, Graham

Scope and Objectives: Kokkos Support provides cyber resources and conducts training events for current and prospective Kokkos users; In person training events are organized in various venues providing both generic Kokkos tutorials with lectures and exercises, as well as hands-on work on users applications.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

ATDM/ECP Milestone Memo WBS 2.3.4.04 / SNL ATDM Data and Visualization Projects STDV04-21 - [MS1/YR2] Q3: Prototype Catalyst/ParaView in-situ viz for unsteady RV flow on ATS-1

Moreland, Kenneth D.

ParaView Catalyst is an API for accessing the scalable visualization infrastructure of ParaView in an in-situ context. In-situ visualization allows simulation codes to access data post-processing operations while the simulation is running. In-situ techniques can reduce data post-processing time, allow computational steering, and increase the resolution and frequency of data output. For a simulation code to use ParaView Catalyst, adapter code needs to be created that interfaces the simulations data structures to ParaView/VTK data structures. Under ATDM, Catalyst is to be integrated with SPARC, a code used for simulation of unsteady reentry vehicle flow.

More Details
Results 2701–2750 of 9,998
Results 2701–2750 of 9,998