Publications

Results 2901–2950 of 9,998

Search results

Jump to search filters

Performance of preconditioned iterative solvers in MFiX–Trilinos for fluidized beds

Journal of Supercomputing

Spotz, William S.; Krushnarao Kotteda, V.M.; Kumar, Vinod

MFiX, a general-purpose Fortran-based suite, simulates the complex flow in fluidized bed applications via BiCGStab and GMRES methods along with plane relaxation preconditioners. Trilinos, an object-oriented framework, contains various first- and second-generation Krylov subspace solvers and preconditioners. We developed a framework to integrate MFiX with Trilinos as MFiX does not possess advanced linear methods. The framework allows MFiX to access advanced linear solvers and preconditioners in Trilinos. The integrated solver is called MFiX–Trilinos, here after. In the present work, we study the performance of variants of GMRES and CGS methods in MFiX–Trilinos and BiCGStab and GMRES solvers in MFiX for a 3D gas–solid fluidized bed problem. Two right preconditioners employed along with various solvers in MFiX–Trilinos are Jacobi and smoothed aggregation. The flow from MFiX–Trilinos is validated against the same from MFiX for BiCGStab and GMRES methods. And, the effect of the preconditioning on the iterative solvers in MFiX–Trilinos is also analyzed. In addition, the effect of left and right smoothed aggregation preconditioning on the solvers is studied. The performance of the first- and second-generation solver stacks in MFiX–Trilinos is studied as well for two different problem sizes.

More Details

Generation and application of multivariate polynomial quadrature rules

Computer Methods in Applied Mechanics and Engineering

Jakeman, John D.; Narayan, Akil

The search for multivariate quadrature rules of minimal size with a specified polynomial accuracy has been the topic of many years of research. Finding such a rule allows accurate integration of moments, which play a central role in many aspects of scientific computing with complex models. The contribution of this paper is twofold. First, we provide novel mathematical analysis of the polynomial quadrature problem that provides a lower bound for the minimal possible number of nodes in a polynomial rule with specified accuracy. We give concrete but simplistic multivariate examples where a minimal quadrature rule can be designed that achieves this lower bound, along with situations that showcase when it is not possible to achieve this lower bound. Our second contribution is the formulation of an algorithm that is able to efficiently generate multivariate quadrature rules with positive weights on non-tensorial domains. Our tests show success of this procedure in up to 20 dimensions. We test our method on applications to dimension reduction and chemical kinetics problems, including comparisons against popular alternatives such as sparse grids, Monte Carlo and quasi Monte Carlo sequences, and Stroud rules. The quadrature rules computed in this paper outperform these alternatives in almost all scenarios.

More Details

Large-Scale System Monitoring Experiences and Recommendations

Ahlgren, V.; Andersson, S.; Brandt, James M.; Cardo, N.; Chunduri, S.; Enos, J.; Fields, P.; Gentile, Ann C.; Gerber, R.; Gienger, M.; Greenseid, J.; Greiner, A.; Hadri, B.; He, Y.; Hoppe, D.; Kaila, U.; Kelly, K.; Klein, M.; Kristiansen, A.; Leak, S.; Mason, M.; Laros, James H.; Piccinali, J-G; Repik, Jason; Rogers, J.; Salminen, S.; Showerman, M.; Whitney, C.; Williams, J.

Abstract not provided.

Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence

Geraci, Gianluca G.; Fairbanks, Hillary; Jofre, Lluis; Iaccarino, Gianluca; Doostan, Alireza

Efficiently performing predictive studies of irradiated particle-laden turbulent flows has the potential of providing significant contributions towards better understanding and optimizing, for example, concentrated solar power systems. As there are many uncertainties inherent in such flows, conducting uncertainty quantification analyses is fundamental to improve the predictive capabilities of the numerical simulations. For largescale, multi-physics problems exhibiting high-dimensional uncertainty, characterizing the stochastic solution presents a significant computational challenge as many methods require a large number of high-fidelity, forward model solves. This requirement results in the need for a possibly infeasible number of simulations when a typical converged high-fidelity simulation requires intensive computational resources. To reduce the cost of quantifying high-dimensional uncertainties, we investigate the application of a non-intrusive, bi-fidelity approximation to estimate statistics of quantities of interest associated with an irradiated particle-laden turbulent flow. This method relies on exploiting the low-rank structure of the solution to accelerate the stochastic sampling and approximation processes by means of cheaper-to-run, lower fidelity representations. The application of this bi-fidelity approximation results in accurate estimates of the QoI statistics while requiring a small number of high-fidelity model evaluations. It also enables efficient computation of sensitivity analyses which highlight that epistemic uncertainty plays an important role in the solution of irradiated, particle-laden turbulent flow.

More Details

A Role for IEEE in Quantum Computing

Computer

DeBenedictis, Erik

Will quantum computation become an important milestone in human progress? Passionate advocates and equally passionate skeptics abound. IEEE already provides useful, neutral forums for state-of-the-art science and engineering knowledge as well as practical benchmarks for quantum computation evaluation. But could the organization do more.

More Details

Fast Approximate Union Volume in High Dimensions with Line Samples

Mitchell, Scott A.; Awad, Muhammad A.; Ebeida, Mohamed S.; Swiler, Laura P.

The classical problem of calculating the volume of the union of d-dimensional balls is known as "Union Volume." We present line-sampling approximation algorithms for Union Volume. Our methods may be extended to other Boolean operations, such as setminus; or to other shapes, such as hyper-rectangles. The deterministic, exact approaches for Union Volume do not scale well to high dimensions. However, we adapt several of these exact approaches to approximation algorithms based on sampling. We perform local sampling within each ball using lines. We have several variations, depending on how the overlapping volume is partitioned, and depending on whether radial, axis-aligned, or other line patterns are used. Our variations fall within the family of Monte Carlo sampling, and hence have about the same theoretical convergence rate, 1 /$\sqrt{M}$, where M is the number of samples. In our limited experiments, line-sampling proved more accurate per unit work than point samples, because a line sample provides more information, and the analytic equation for a sphere makes the calculation almost as fast. We performed a limited empirical study of the efficiency of these variations. We suggest a more extensive study for future work. We speculate that different ball arrangements, differentiated by the distribution of overlaps in terms of volume and degree, will benefit the most from patterns of line samples that preferentially capture those overlaps. Acknowledgement We thank Karl Bringman for explaining his BF-ApproxUnion (ApproxUnion) algorithm [3] to us. We thank Josiah Manson for pointing out that spoke darts oversample the center and we might get a better answer by uniform sampling. We thank Vijay Natarajan for suggesting random chord sampling. The authors are grateful to Brian Adams, Keith Dalbey, and Vicente Romero for useful technical discussions. This work was sponsored by the Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics Program. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

More Details
Results 2901–2950 of 9,998
Results 2901–2950 of 9,998