Publications

Results 1–25 of 29

Search results

Jump to search filters

Creation of nanoscale magnetic fields using nano-magnet arrays

AIP Advances

Sapkota, Keshab R.; Eley, S.; Bussmann, Ezra B.; Harris, Charles T.; Maurer, Leon M.; Lu, Tzu-Ming L.

We present the fabrication of nano-magnet arrays, comprised of two sets of interleaving SmCo5 and Co nano-magnets, and the subsequent development and implementation of a protocol to program the array to create a one-dimensional rotating magnetic field. We designed the array based on the microstructural and magnetic properties of SmCo5 films annealed under different conditions, also presented here. Leveraging the extremely high contrast in coercivity between SmCo5 and Co, we applied a sequence of external magnetic fields to program the nano-magnet arrays into a configuration with alternating polarization, which based on simulations creates a rotating magnetic field in the vicinity of nano-magnets. Our proof-of-concept demonstration shows that complex, nanoscale magnetic fields can be synthesized through coercivity contrast of constituent magnetic materials and carefully designed sequences of programming magnetic fields.

More Details

Single and double hole quantum dots in strained Ge/SiGe quantum wells

Nanotechnology

Hardy, Will H.; Harris, Charles T.; Su, Yi H.; Chuang, Yen; Moussa, Jonathan; Maurer, Leon M.; Li, Jiun Y.; Lu, Tzu-Ming L.; Luhman, Dwight R.

Even as today's most prominent spin-based qubit technologies are maturing in terms of capability and sophistication, there is growing interest in exploring alternate material platforms that may provide advantages, such as enhanced qubit control, longer coherence times, and improved extensibility. Recent advances in heterostructure material growth have opened new possibilities for employing hole spins in semiconductors for qubit applications. Undoped, strained Ge/SiGe quantum wells are promising candidate hosts for hole spin-based qubits due to their low disorder, large intrinsic spin-orbit coupling strength, and absence of valley states. Here, we use a simple one-layer gated device structure to demonstrate both a single quantum dot as well as coupling between two adjacent quantum dots. The hole effective mass in these undoped structures, m∗ ∼ 0.08 m 0, is significantly lower than for electrons in Si/SiGe, pointing to the possibility of enhanced tunnel couplings in quantum dots and favorable qubit-qubit interactions in an industry-compatible semiconductor platform.

More Details

Gate-defined quantum dots in Ge/SiGe quantum wells as a platform for spin qubits

ECS Transactions

Hardy, Will H.; Su, Y.H.; Chuang, Y.; Maurer, Leon M.; Brickson, Mitchell I.; Baczewski, Andrew D.; Li, J.Y.; Lu, Tzu-Ming L.; Luhman, Dwight R.

In the field of semiconductor quantum dot spin qubits, there is growing interest in leveraging the unique properties of hole-carrier systems and their intrinsically strong spin-orbit coupling to engineer novel qubits. Recent advances in semiconductor heterostructure growth have made available high quality, undoped Ge/SiGe quantum wells, consisting of a pure strained Ge layer flanked by Ge-rich SiGe layers above and below. These quantum wells feature heavy hole carriers and a cubic Rashba-type spin-orbit interaction. Here, we describe progress toward realizing spin qubits in this platform, including development of multi-metal-layer gated device architectures, device tuning protocols, and charge-sensing capabilities. Iterative improvement of a three-layer metal gate architecture has significantly enhanced device performance over that achieved using an earlier single-layer gate design. We discuss ongoing, simulation-informed work to fine-tune the device geometry, as well as efforts toward a single-spin qubit demonstration.

More Details

Gate-defined quantum dots in Ge/SiGe quantum wells as a platform for spin qubits

ECS Transactions

Hardy, Will H.; Su, Y.H.; Chuang, Y.; Maurer, Leon M.; Brickson, Mitchell I.; Baczewski, Andrew D.; Li, J.Y.; Lu, Tzu-Ming L.; Luhman, Dwight R.

In the field of semiconductor quantum dot spin qubits, there is growing interest in leveraging the unique properties of hole-carrier systems and their intrinsically strong spin-orbit coupling to engineer novel qubits. Recent advances in semiconductor heterostructure growth have made available high quality, undoped Ge/SiGe quantum wells, consisting of a pure strained Ge layer flanked by Ge-rich SiGe layers above and below. These quantum wells feature heavy hole carriers and a cubic Rashba-type spin-orbit interaction. Here, we describe progress toward realizing spin qubits in this platform, including development of multi-metal-layer gated device architectures, device tuning protocols, and charge-sensing capabilities. Iterative improvement of a three-layer metal gate architecture has significantly enhanced device performance over that achieved using an earlier single-layer gate design. We discuss ongoing, simulation-informed work to fine-tune the device geometry, as well as efforts toward a single-spin qubit demonstration.

More Details

Hole Spin Qubits in Germanium

Luhman, Dwight R.; Lu, Tzu-Ming L.; Hardy, Will H.; Maurer, Leon M.

Holes in germanium-rich heterostructures provide a compelling alternative for achieving spin based qubits compared to traditional approaches such as electrons in silicon. In this project, we addressed the question of whether holes in Ge/SiGe quantum wells can be confined into laterally defined quantum dots and made into qubits. Through this effort, we successfully fabricated and operated single-metal-layer quantum dot devices in Ge/SiGe in multiple devices. For single quantum dots, we measured the capacitances of the quantum dot to the surface electrodes and find that they reasonably compare to expected values based on the electrode dimensions, suggested that we have formed a lithographic quantum dot. We also compare the results to detailed self-consistent calculations of the expected potential. Finally, we demonstrate, for the first time, a double quantum dot in the Ge/SiGe material system.

More Details

Engineering Spin-Orbit Interaction in Silicon

Lu, Tzu-Ming L.; Maurer, Leon M.; Bussmann, Ezra B.; Harris, Charles T.; Tracy, Lisa A.; Sapkota, Keshab R.

There has been much interest in leveraging the topological order of materials for quantum information processing. Among the various solid-state systems, one-dimensional topological superconductors made out of strongly spin-orbit-coupled nanowires have been shown to be the most promising material platform. In this project, we investigated the feasibility of turning silicon, which is a non-topological semiconductor and has weak spin-orbit coupling, into a one-dimensional topological superconductor. Our theoretical analysis showed that it is indeed possible to create a sizable effective spin-orbit gap in the energy spectrum of a ballistic one-dimensional electron channel in silicon with the help of nano-magnet arrays. Experimentally, we developed magnetic materials needed for fabricating such nano-magnets, characterized the magnetic behavior at low temperatures, and successfully demonstrated the required magnetization configuration for opening the spin-orbit gap. Our results pave the way toward a practical topological quantum computing platform using silicon, one of the most technologically mature electronic materials.

More Details
Results 1–25 of 29
Results 1–25 of 29