Publications

Results 1–25 of 86
Skip to search filters

Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver (2nd Ed)

Ho, Clifford K.; Ortega, Jesus O.; Vorobieff, Peter V.; Mohan, Gowtham M.; Glen, Andrew G.; Sanchez, A.L.; Dexheimer, Darielle D.; Schroeder, Nathan; Martins, Vanderlei M.

High - temperature particle receivers are being pursued to enable next - generation concentrating solar thermal power (CSP) systems that can achieve higher temperatures (> 700 C) to enable more efficient power cycles, lower overall system costs, and emerging CSP - based process - heat applications. The objective of this work was to develop characterization methods to quantify the particle and heat losses from the open aperture of the particle receiver. Novel camera - based imaging methods were developed and applied to both laboratory - scale and larger 1 MW t on - sun tests at the National Solar Thermal Test Facility in Albuquerque, New Mexico. Validation of the imaging methods was performed using gravimetric and calorimetric methods. In addition, conventional particle - sampling methods using volumetric particle - air samplers were applied to the on - sun tests to compare particle emission rates with regulatory standards for worker safety and pollution. Novel particle sampling methods using 3 - D printed tipping buckets and tethered balloons were also developed and applied to the on - sun particle - receiver tests. Finally, models were developed to simulate the impact of particle size and wind on particle emissions and concentrations as a function of location. Results showed that particle emissions and concentrations were well below regulatory standards for worker safety and pollution. In addition, estimated particle temperatures and advective heat losses from the camera - based imaging methods correlated well with measured values during the on - sun tests.

More Details

Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver

Ho, Clifford K.; Ortega, Jesus O.; Vorobieff, Peter V.; Mohan, Gowtham M.; Glen, Andrew G.; Sanchez, A.L.; Dexheimer, Darielle D.; Schroeder, Nathan; Martins, Vanderlei M.

High-temperature particle receivers are being pursued to enable next-generation concentrating solar thermal power (CSP) systems that can achieve higher temperatures (> 700 °C) to enable more efficient power cycles, lower overall system costs, and emerging CSP-based process-heat applications. The objective of this work was to develop characterization methods to quantify the particle and heat losses from the open aperture of the particle receiver. Novel camera- based imaging methods were developed and applied to both laboratory-scale and larger 1 MWt on-sun tests at the National Solar Thermal Test Facility in Albuquerque, New Mexico. Validation of the imaging methods was performed using gravimetric and calorimetric methods. In addition, conventional particle-sampling methods using volumetric particle-air samplers were applied to the on-sun tests to compare particle emission rates with regulatory standards for worker safety and pollution. Novel particle sampling methods using 3-D printed tipping buckets and tethered balloons were also developed and applied to the on-sun particle-receiver tests. Finally, models were developed to simulate the impact of particle size and wind on particle emissions and concentrations as a function of location. Results showed that particle emissions and concentrations were well below regulatory standards for worker safety and pollution. In addition, estimated particle temperatures and advective heat losses from the camera-based imaging methods correlated well with measured values during the on-sun tests.

More Details

Near-field and far-field sampling of aerosol plumes to evaluate particulate emission rates from a falling particle receiver during on-sun testing

Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021

Glen, Andrew G.; Dexheimer, Darielle D.; Sanchez, A.L.; Ho, Clifford K.; China, Swarup; Mei, Fan; Lata, Nurun N.

High-temperature falling particle receivers are being investigated for next-generation concentrating solar power applications. Small sand-like particles are released into an open-cavity receiver and are irradiated by concentrated sunlight from a field of heliostats. The particles are heated to temperatures over 700 °C and can be stored to produce heat for electricity generation or industrial applications when needed. As the particles fall through the receiver, particles and particulate fragments in the form of aerosolized dust can be emitted from the aperture, which can lower thermal efficiency, increase costs of particle replacement, and pose a particulate matter (PM) inhalation risk. This paper describes sampling methods that were deployed during on-sun tests to record nearfield (several meters) and far-field (tens to hundreds of meters) concentrations of aerosol particles within emitted plumes. The objective was to quantify the particulate emission rates and loss from the falling particle receiver in relation to OSHA and EPA National Ambient Air Quality Standards (NAAQS). Near-field instrumentation placed on the platform in proximity to the receiver aperture included several real-time aerosol size distribution and concentration measurement techniques, including a TSI Aerodynamic Particle Sizers (APS), TSI DustTraks, Handix Portable Optical Particle Spectrometers (POPS), Alphasense Optical Particle Counters (OPC), TSI Condensation Particle Counters (CPC), Cascade Particle Impactors, 3D-printed prototype tipping buckets, and meteorological instrumentation. Far-field particle sampling techniques utilized multiple tethered balloons located upwind and downwind of the particle receiver to measure the advected plume concentrations using a suite of airborne aerosol and meteorological instruments including POPS, CPCs, OPCs and cascade impactors. The combined aerosol size distribution for all these instruments spanned particle sizes from 0.02 μm - 500 μm. Results showed a strong influence of wind direction on particle emissions and concentration, with preliminary results showing representative concentrations below both the OSHA and NAAQS standards.

More Details

Multihour stratospheric flights with the heliotrope solar hot-air balloon

Journal of Atmospheric and Oceanic Technology

Bowman, Daniel B.; Norman, Paul E.; Pauken, Michael T.; Albert, Sarah A.; Dexheimer, Darielle D.; Yang, Xiao; Krishnamoorthy, Siddharth; Komjathy, Attila; Cutts, James A.

Standard meteorological balloons can deliver small scientific payloads to the stratosphere for a few tens of minutes, but achieving multihour level flight in this region is more difficult. We have developed a solarpowered hot-air balloon named the heliotrope that can maintain a nearly constant altitude in the upper troposphere–lower stratosphere as long as the sun is above the horizon. It can accommodate scientific payloads ranging from hundreds of grams to several kilograms. The balloon can achieve float altitudes exceeding 24 km and fly for days in the Arctic summer, although sunset provides a convenient flight termination mechanism at lower latitudes. Two people can build an envelope in about 3.5 h, and the materials cost about $30. The low cost and simplicity of the heliotrope enables a class of missions that is generally out of reach of institutions lacking specialized balloon expertise. Here, we discuss the design history, construction techniques, trajectory characteristics, and flight prediction of the heliotrope balloon. We conclude with a discussion of the physics of solar hot-air balloon flight.

More Details
Results 1–25 of 86
Results 1–25 of 86