Publications

Results 88151–88175 of 99,299

Search results

Jump to search filters

Science-based material modeling activities at Sandia National Laboratories/California : an overview

Chen, Er-Ping

The purpose of this presentation is to provide an overview of the science-based materials modeling activities at Sandia National Laboratories, California. The main mission driver for the work is the development of predictive modeling and simulation capabilities leveraging high performance computing software and hardware. Presentation will highlight research accomplishments in several specific topics of current interest. Sandia/California has been engaged in the development of high performance computing based predictive modeling and simulation capabilities in support of the Science-Based Stockpile Stewardship Program of the U. S. Department of Energy. Of particular interest is the development of constitutive models that can efficiently and accurately predict post-failure material response and load-redistribution in systems and components. Fracture and failure are inherently multi-scale and our philosophy is to include required physics in our models at all appropriate scales. We approach the problems from the continuum point of view and intend to provide continuum models that include dominant subscale mechanisms. Moreover, numerical algorithms are needed to allow implementation of physical models in high performance computing codes such that large-scale modeling and simulation can be conducted. Other drivers of our effort include the emerging application of micro- and nano-systems and the increasing interest in biotechnology. In this presentation, our research in fracture and failure modeling, atomic-continuum coupling code development, microstructure-material properties relationships exploration, and general continuum theories advancement will be presented. Where appropriate, examples will be given to demonstrate the utility of the models.

More Details

Survey of eigenproblem treatment in quantum chemistry and density functional theory

Muller, Richard P.

{sm_bullet}HF/DFT are one-particle approximation to the Schrodinger equation {sm_bullet} The one-particle, mean field approaches are what lead to the nonlinear eigenvalue problem {sm_bullet} DFT includes a parameterized XC functional that reproduces many-electron effects -Very accurate ground state structures and energies - Problematic for excited states, band gaps

More Details

Computational studies of face-to-face porphyrin catalyzed reduction of dioxygen

Muller, Richard P.; Ingersoll, David

We are investigating the use of face-to-face porphyrin (FTF) materials as potential oxygen reduction catalysts in fuel cells. The FTF materials were popularized by Anson and Collman, and have the interesting property that varying the spacing between the porphyrin rings changes the chemistry they catalyze from a two-electron reduction of oxygen to a four-electron reduction of oxygen. Our goal is to understand how changes in the structure of the FTF materials lead to either two-electron or four-electron reductions. This understand of the FTF catalysis is important because of the potential use of these materials as fuel cell electrocatalysts. Furthermore, the laccase family of enzymes, which has been proposed as an electrocatalytic enzyme in biofuel cell applications, also has family members that display either two-electron or four electron reduction of oxygen, and we believe that an understanding of the structure-function relationships in the FTF materials may lead to an understanding of the behavior of laccase and other enzymes. We will report the results of B3LYP density functional theory studies with implicit solvent models of the reduction of oxygen in several members of the cobalt FTF family.

More Details

Global view of nonlinear dynamics in coupled-cavity lasers : a bifurcation study

Proposed for publication in Optics Communications.

Wieczorek, Sebastian M.; Chow, Weng W.

This paper investigates nonlinear behavior of coupled lasers. Composite-cavity-mode approach and a class-B description of the active medium are used to describe nonlinearities associated with population dynamics and optical coupling. The multimode equations are studied using bifurcation analysis to identify regions of stable locking, periodic oscillations, and complicated dynamics in the parameter space of coupling-mirror transmission T and normalized cavity-length mismatch dL/{lambda}. We further investigate the evolution of the key bifurcations with the linewidth enhancement factor {alpha}. In particular, our analysis reveals the formation of a gap in the lockband that is gradually occupied by instabilities. We also investigate effects of the cavity-length on chaotic dynamics.

More Details

Self-Assembly of biologically inspired complex functional materials

Proposed for publication in the Materials Research Society Bulletin.

Brinker, C.J.

Nature combines hard and soft materials, often in hierarchical architectures, to get synergistic, optimized properties with proven, complex functionalities. Emulating such natural designs in robust engineering materials using efficient processing approaches represents a fundamental challenge to materials chemists. This presentation will review progress on understanding so-called 'evaporation-induced silica/surfactant self-assembly' (EISA) as a simple, general means to prepare porous thin-film nanostructures. Such porous materials are of interest for membranes, low-dielectric-constant (low-k) insulators, and even 'nano-valves' that open and close in response to an external stimulus. EISA can also be used to simultaneously organize hydrophilic and hydrophobic precursors into hybrid nanocomposites that are optically or chemically polymerizable, patternable, or adjustable. In constructing composite structures, a significant challenge is how to controllably organize or define multiple materials on multiple length scales. To address this challenge, we have combined sol-gel chemistry with molecular self-assembly in several evaporation-driven processing procedures collectively referred to as evaporation-induced self-assembly (EISA). EISA starts with a silica/water/surfactant system diluted with ethanol to create a homogeneous solution. We rely on ethanol and water evaporation during dip-coating (or other coating methods) to progressively concentrate surfactant and silica in the depositing film, driving micelle formation and subsequent continuous self-assembly of silica/surfactant thin film mesophases. One of the crucial aspects of this process, in terms of the sol-gel chemistry, is to work under conditions where the condensation rate of the hydrophilic silicic acid precursors (Si-OH) is minimized. The idea is to avoid gelation that would kinetically trap the system at an intermediate non-equilibrium state. We want the structure to self-assemble then solidify, with the addition of a siloxane condensation catalyst or by heating, to form the desired mesostructured product. Operating at an acidic pH (pH = 2) minimizes the condensation rate of silanols to form siloxanes Si-O-SiIn addition, hydrogen bonding and electrostatic interactions between silanols and hydrophilic surfactant head groups can further reduce the condensation rate. These combined factors maintain the depositing film in a fluid state, even beyond the point where ethanol and water are largely evaporated. This allows the deposited film to be self-healing and enables the use of virtually any evaporation-driven process (spin-coating, inkjet printing, or aerosol processing) to create ordered nanostructured films, patterns, or particles.

More Details

Sublimation rates of explosive materials : method development and initial results

Phelan, James M.

Vapor detection of explosives continues to be a technological basis for security applications. This study began experimental work to measure the chemical emanation rates of pure explosive materials as a basis for determining emanation rates of security threats containing explosives. Sublimation rates for TNT were determined with thermo gravimetric analysis using two different techniques. Data were compared with other literature values to provide sublimation rates from 25 to 70 C. The enthalpy of sublimation for the combined data was found to be 115 kJ/mol, which corresponds well with previously reported data from vapor pressure determinations. A simple Gaussian atmospheric dispersion model was used to estimate downrange concentrations based on continuous, steady-state conditions at 20, 45 and 62 C for a nominal exposed block of TNT under low wind conditions. Recommendations are made for extension of the experimental vapor emanation rate determinations and development of turbulent flow computational fluid dynamics based atmospheric dispersion estimates of standoff vapor concentrations.

More Details

Design, simulation, and application of quasi-spherical z-pinch implosions driven by tens of mega-amperes

Proposed for publication in Physics of Plasmas.

Nash, Thomas J.; Leeper, Ramon J.; McDaniel, Dillon H.; Deeney, Christopher D.; Sanford, Thomas W.L.; Struve, Kenneth

A quasi-spherical z-pinch may directly compress foam or deuterium and tritium in three dimensions as opposed to a cylindrical z-pinch, which compresses an internal load in two dimensions only. Because of compression in three dimensions the quasi-spherical z-pinch is more efficient at doing pdV work on an internal fluid than a cylindrical pinch. Designs of quasi-spherical z-pinch loads for the 28 MA 100 ns driver ZR, results from zero-dimensional (0D) circuit models of quasi-spherical implosions, and results from 1D hydrodynamic simulations of quasi-spherical implosions heating internal fluids will be presented. Applications of the quasi-spherical z-pinch implosions include a high radiation temperature source for radiation driven experiments, a source of neutrons for treating radioactive waste, and a source of fusion energy for a power generator.

More Details

Nanoparticles for suppression of dewetting of thin polymer films for use in chemical sensors

Giunta, Rachel K.

Addition of fullerenes (C60 or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (?50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate--polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (?29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable.

More Details
Results 88151–88175 of 99,299
Results 88151–88175 of 99,299