Publications

Results 94701–94750 of 99,299

Search results

Jump to search filters

A computer based system for prioritizing pollution prevention opportunity assessments at SNL/NM

Walsh, M.L.

Prioritizing waste generators is necessary to determine which are the best candidates for Pollution Prevention Opportunity Assessments (PPOAs). This paper describes the Sandia National Laboratories/New Mexico (SNL/NM) PPOA Ranking System. The system uses a multimedia approach that considers hazardous and radioactive waste disposal data, and hazardous chemical usage data (from which air emissions are extrapolated). Pollution prevention information is included, from the SNL Pollution Prevention Opportunities database that identifies waste streams that have readily apparent pollution prevention opportunities. The system also considers the relative costs of waste management and the chargeback fees paid for waste generation. From these data, organizations are ranked with an algorithm developed in Microsoft Access{trademark} on a personal computer. The concept could readily be transferred to other facilities needing to decide where to perform PPOAs.

More Details

Discovering system requirements

Bahill, A.T.

Cost and schedule overruns are often caused by poor requirements that are produced by people who do not understand the requirements process. This report provides a high-level overview of the system requirements process, explaining types, sources, and characteristics of good requirements. System requirements, however, are seldom stated by the customer. Therefore, this report shows ways to help you work with your customer to discover the system requirements. It also explains terminology commonly used in the requirements development field, such as verification, validation, technical performance measures, and the various design reviews.

More Details

Testing to estimate the Munson-Dawson parameters

Fossum, Arlo F.

Parameter estimation for modern viscoplastic constitutive models often requires data from many tests. Sensitivity coefficients can be used to design an efficient test matrix and reduce testing requirements. The present study derives sensitivity coefficients for each model parameter in the Munson-Dawson constitutive model and evaluates them for several load histories.

More Details

A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

Stevens, J.W.; Corey, G.P.

Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

More Details

Design and implementation of MPI on Puma portals

Brightwell, Ronald B.

As the successor to SUNMOS [8], the Puma operating system provides a flexible, lightweight, high performance message passing environment for massively parallel computers. Message passing in Puma is accomplished through the use of a new mechanism known as a portal. Puma is currently running on the Intel Paragon and is being developed for the Intel TeraFLOPS machine. In this paper we discuss issues regarding the development of the Argonne National Laboratory/Mississippi State University implementation of the Message Passing Interface standard on top of portals. Included is a description of the design and implementation for both MPI point-to- point and collective communications, and MPI-2 one-sided communications.

More Details

Development of the nuclear weapons complex EP architecture

Halbleib, Laura L.

The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

More Details

Moessbauer investigation of materials used in Sandia`s DCL catalyst testing program

Stohl, F.V.

Moessbauer spectroscopy has been used to determine the iron-bearing phases in the coal, catalysts, and IOM products used and generated in the Direct Coal Liquefaction (DCL) catalyst testing program at Sandia National Laboratories, New Mexico. DCL experiments were conducted with a Blind Canyon, Utah, coal both thermally and with three different iron-based catalysts: (1) a sulfated hematite catalyst (Fe{sub 2}O{sub 3}/SO{sub 4}{sup 2{minus}}), (2) a 6-line ferrihydrite catalyst, and (3) iron-oxide impregnated directly into coal. The catalysts were added to the coal at both a 0.5 and a 1.0 wt% level and sufficient sulfur was added to ensure complete sulfidation of the iron. The Moessbauer spectrum of the Blind Canyon coal revealed that the major iron-bearing mineral present was ankerite, Ca(Fe,Mg)(CO{sub 3}){sub 2}, which converts firs to {gamma}-Fe (austenitic iron) before undergoing partial sulfidation to pyrrhotite in the thermal runs. The percentages of pyrrhotite formed in the catalytic runs were higher than those in the thermal runs indicating that sulfidation of the added iron occurs more rapidly than with the ankerite. Moessbauer data on the amount of pyrrhotite present does not correlate well with THF and heptane conversion percentages, indicating that other parameters like catalyst dispersion must also be considered.

More Details

Template-mediated ontogenesis: A novel approach to mesomorphic materials

Martin, James E.

In this report the authors describe the methods they have developed for producing stable periodic mesoporous silica gels, thin films of mesoporous silica for sensor applications, a route to nonaqueous synthesis, and the use of various additives in controlling the pore size and structure of these materials. Mesoporous silica is formed by templating silica precursors around micelles of cationic quaternary ammonium surfactants. During the synthesis these micelles undergo a phase transition to a hexagonal, lamellar or cubic liquid crystalline state, thus imposing periodic order on the amorphous silica which occupies the interface of the hydrophilic cationic headgroups of the surfactants. The product of the bulk wet synthesis is a gel composed of micron size silica/surfactant particles, each of which consists of one or more crystalline domains of silica condensed around the surfactant template. The wet gel can then be washed and pyrolyzed to remove the surfactant template, yielding the periodic mesoporous silica product.

More Details

Joint U.S./Russian plutonium disposition study: Nonproliferation issues

Jaeger, Calvin D.

In an effort to establish joint activities in the disposition of fissile materials from nuclear materials, the US and Russia agreed to conduct joint work to develop consistent comparisons of various alternatives for the disposition of weapons-grade plutonium. Joint working groups were established for the analysis of alternatives for plutonium management for water reactors, fast reactors, storage, geological formations, immobilization and stabilization of solutions and other forms. In addition cross-cutting working groups were established for economic analysis and nonproliferation (NP). This paper reviews the activities of the NP working group in support of these studies. The NP working group provided integrated support in the area of nuclear NP to the other US/Russian Study teams. It involved both domestic safeguards and security and international safeguards. The analysis of NP involved consideration of the resistance to theft or diversion and resistance to retrieval, extraction or reuse.

More Details

The influence of precursor structure on the development of porosity in polymer-derived SiC

Brinker, C.J.

Polymer-based routes to ceramic oxides take advantage of precursor chemistry and structure to produce materials with a range of pore sizes. Polymer precursor routes to non-oxide ceramics offer products with superior thermal and chemical stability in many cases. Polymethylsilane (PMS), a versatile cross linked SiC precursor, [(MeHSi){sub x}(MeSi){sub y}], was synthesized using published procedures to yield fluid precursors with a low (20--40%) degree of cross linking. Unique, highly cross linked (60--70%), solid polymers were produced under reaction conditions which carefully conserve the volatile monomer. These two polymers were converted to SiC to determine the relative importance of the various contributions to porosity, and to assess the role of precursor structure on porosity development in non-oxides. Initial results indicate that precursor structure has little effect on porosity. The development of the porosity appears to be dominated by high temperature thermochemistry and/or microstructural changes.

More Details

Zeolite membranes from kaolin

Phillips, Mark L.F.

Zeolite films are sought as components of molecular sieve membranes. Different routes used to prepare zeolite composite membranes include growing zeolite layers from gels on porous supports, depositing oriented zeolites on supports, and dispersing zeolites in polymeric membranes. In most cases, it is very difficult to control and avoid the formation of cracks and/or pinholes. The approach to membrane synthesis is based on hydrothermally converting films of layered aluminosilicates into zeolite films. The authors have demonstrated this concept by preparing zeolite A membranes on alumina supports from kaolin films. The authors have optimized the process parameters not only for desired bulk properties, but also for preparing thin (ca. 5 {micro}m), continuous zeolite A films. Scanning electron microscopy shows highly intergrown zeolite A crystals over most of the surface area of the membrane, but gas permeation experiments indicate existence of mesoporous defects and/or intercrystalline gaps. It has been demonstrated that the thickness of the final zeolite A membrane can be controlled by limiting the amount of precursor kaolin present in the membrane.

More Details

Ceramic catalyst materials

Sault, Allen G.

This project focuses on the modification of silica and alumina surfaces by titania and hydrous titanium oxide ion-exchange films, and the use of these modified materials as supports for MoS{sub 2} catalysts. FTIR studies of molybdena interaction with {gamma}-Al{sub 2}O{sub 3} demonstrate that at low loadings Mo interacts with the most basic hydroxyl groups, and that these hydroxyls are associated with tetrahedrally coordinated Al. Furthermore, hydrodesulfurization (HDS) activity as a function of Mo loading shows a maximum in specific activity with loading. The Mo species bound to tetrahedrally coordinated Al sites are therefore believed to be inactive for the HDS reaction. Only after the tetrahedral Al sites have completely consumed does molybdena adsorb on the alumina in a manner that leads to an active catalyst. According to this scheme, the activity of alumina supported MoS{sub 2} catalysts could be greatly improved by either titrating the tetrahedral Al sites with a modifier, or by using {alpha}-Al{sub 2}O{sub 3} which contains no tetrahedrally coordinated Al. HDS tests over MoS{sub 2} supported on both {alpha}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3} modified by a titania film confirm this hypothesis. Neither support material gives rise to a maximum in activity with Mo loading, but rather exhibits a smooth decrease in activity with loading. Furthermore, for equivalent Mo loadings the activity of both of these support materials exceeds that of unmodified {gamma}-Al{sub 2}O{sub 3} due to the fact that no Mo is tied up in the inactive form. FTIR, XPS, and TEM are currently being used to determine whether the model can indeed account for the observed activity trends. Although the surface area of {alpha}-Al{sub 2}O{sub 3} is too low for use as a commercial catalyst, the titania coated {gamma}-Al{sub 2}O{sub 3} represents an important, practical improvement in support materials for hydrotreating catalysts.

More Details

The DOE/DOD Environmental Data Bank

C'De Baca, John E.

The DOE/DOD Environmental Data Bank was established in 1959 as a central location for storing weapons and equipment environments information from a variety of DOE, DOD, and industrial sources and continues to be maintained by Sandia National Laboratories. The Environmental Data Bank contains approximately 2,900 documents regarding normal and abnormal environments that describe the handling, storage, transportation, use, and general phases, which occur during the life of a weapon system. The Environmental Data Bank contains a vast assortment of resources that document crash, fire, and chemical environments resulting from aircraft, rail, ship, and truck accidents, as well as crash and thermal tests conducted on shipping containers. Also included are studies on the hazards of exposure to liquid natural gas fireballs, chemical fireballs, and hydrogen fireballs. This paper describes the DOE/DOD Environmental Data Bank system, its structure, data sources, and usage, with particular emphasis on its use for safety assessments at Sandia National Laboratories.

More Details

A comparison of commercial/industry and nuclear weapons safety concepts

Bennett, R.R.

In this paper the authors identify factors which influence the safety philosophy used in the US commercial/industrial sector and compare them against those factors which influence nuclear weapons safety. Commercial/industrial safety is guided by private and public safety standards. Generally, private safety standards tend to emphasize product reliability issues while public (i.e., government) safety standards tend to emphasize human factors issues. Safety in the nuclear weapons arena is driven by federal requirements and memoranda of understanding (MOUs) between the Departments of Defense and Energy. Safety is achieved through passive design features integrated into the nuclear weapon. Though the common strand between commercial/industrial and nuclear weapons safety is the minimization of risk posed to the general population (i.e., public safety), the authors found that each sector tends to employ a different safety approach to view and resolve high-consequence safety issues.

More Details

Russian surety research projects in the Sandia National Laboratories Cooperative Measures Program

Smith, Richard

Over forty safety and security related research and development projects have been initiated between Sandia National Laboratories and the Russian nuclear weapons laboratories VNIIEF and VNIITF. About half of these projects have been completed. All relate to either safety or security methodology development, processes, accident environment analysis and testing, accident databases, assessments or product design of devices. All projects have a potential benefit to various safety or security programs and some may directly have commercial applications. In general, these projects could benefit risk assessments associated with systems that could result in accidents or incidents having high public consequences. These systems typically have already been engineered to have very low assessed probabilities of occurrence of such accidents or incidents. This paper gives an overview of the Sandia surety program with a focus on the potential for future collaboration between Sandia, three Russian Institutes; VNIIEF, VNIITF and VNIIA, and other industry and government organizations. The intent is to serve as an introduction to a roundtable session on Russian Safety Collaboration at the 14th International System Safety Conference. The current Sandia collaboration program scope and rationale is presented along with the evolved program focus. An overview of the projects is given and a few specific projects are briefly highlighted with tangible results to date.

More Details

Financial system loss as an example of high consequence, high frequency events

Mcgovern, D.E.

Much work has been devoted to high consequence events with low frequency of occurrence. Characteristic of these events are bridge failure (such as that of the Tacoma Narrows), building failure (such as the collapse of a walkway at a Kansas City hotel), or compromise of a major chemical containment system (such as at Bhopal, India). Such events, although rare, have an extreme personal, societal, and financial impact. An interesting variation is demonstrated by financial losses due to fraud and abuse in the money management system. The impact can be huge, entailing very high aggregate costs, but these are a result of the contribution of many small attacks and not the result of a single (or few) massive events. Public awareness is raised through publicized events such as the junk bond fraud perpetrated by Milikin or gross mismanagement in the failure of the Barings Bank through unsupervised trading activities by Leeson in Singapore. These event,s although seemingly large (financial losses may be on the order of several billion dollars), are but small contributors to the estimated $114 billion loss to all types of financial fraud in 1993. This paper explores the magnitude of financial system losses and identifies new areas for analysis of high consequence events including the potential effect of malevolent intent.

More Details

Russian risk assessment methods and approaches

Dvorack, Michael A.

One of the benefits resulting from the collapse of the Soviet Union is the increased dialogue currently taking place between American and Russian nuclear weapons scientists in various technical arenas. One of these arenas currently being investigated involves collaborative studies which illustrate how risk assessment is perceived and utilized in the Former Soviet Union (FSU). The collaborative studies indicate that, while similarities exist with respect to some methodologies, the assumptions and approaches in performing risk assessments were, and still are, somewhat different in the FSU as opposed to that in the US. The purpose of this paper is to highlight the present knowledge of risk assessment methodologies and philosophies within the two largest nuclear weapons laboratories of the Former Soviet Union, Arzamas-16 and Chelyabinsk-70. Furthermore, This paper will address the relative progress of new risk assessment methodologies, such as Fuzzy Logic, within the framework of current risk assessment methods at these two institutes.

More Details

Challenging and improving conceptual models for isothermal flow in unsaturated, fractured rock through exploration of small-scale processes

Glass, R.J.; Nicholl, M.J.; Tidwell, V.C.

Over the past several years, the authors have performed experimental studies focused on understanding small-scale flow processes within discrete fractures and individual matrix blocks; much of the understanding gained in that time differs from that underlying the basic assumptions used in effective media representations. Here they synthesize the process level understanding gained from their laboratory studies to explore how such small-scale processes may influence the behavior of fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the formulation of intermediate-scale effective media properties. They also explore, by means of a thought experiment, how these same small-scale processes could couple to produce a large-scale system response inconsistent with current conceptual models based on continuum representations of flow through unsaturated, fractured rock. Based on their findings, a number of modifications to existing dual permeability models are suggested that should allow them improved applicability; however, even with these modifications, it is likely that continuum representations of flow through unsaturated fractured rock will have limited validity and must therefore be applied with caution.

More Details

Ensuring critical event sequences in high integrity software by applying path expressions

Kidd, Marie-Elena C.

The goal of this work is to extend the use of existing path expression theory and methodologies to ensure that critical software event sequences are maintained even in the face of malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. This paper discusses the perceived problems, a brief overview of path expressions, and the author`s proposed extension areas. The authors discuss how the traditional path expression usage and implementation differs from the intended usage and implementation.

More Details

Phosphor synthesis routes and their effect on the performance of garnet phosphorus at low-voltages

Phillips, Mark L.F.

Garnet phosphors have potential for use in field emission displays (FEDs). Green-emitting Gd{sub 3}Ga{sub 5}O{sub 12}:Tb (GGG:Tb) and Y{sub 3}Al{sub 5}O{sub 12}:Tb (YAG:Tb) are possible alternatives to ZnO:Zn, because of their excellent resistance to burn, low-voltage efficiency, (3.5 lm/W from GGG:Tb at 800 V), and saturation resistance at high power densities. Hydrothermal and combustion synthesis techniques were employed to improve the low-voltage efficiency of YAG:Tb, and Y{sub 3}Ga{sub 5}O{sub 12}:Tb (YGG:Tb). Synthetic technique did not affect low-voltage (100--1,000 V) efficiency, but affected the particle size, morphology, and burn resistance. The small particle size phosphors obtained via hydrothermal (<1 {micro}m) and combustion reactions (<1 {micro}m) would benefit projection TV, high-definition TV (HDTV), and heads-up displays (HUDs), where smaller pixel sizes are required for high resolution.

More Details

Parametric study of compound semiconductor etching utilizing inductively coupled plasma source

Shul, Randy J.

Inductively Coupled Plasma (ICP) sources are extremely promising for large-area, high-ion density etching or deposition processes. In this review the authors compare results for GaAs and GaN etching with both ICP and Electron Cyclotron Resonance (ECR) sources on the same single-wafer platform. The ICP is shown to be capable of very high rates with excellent anisotropy for fabrication of GaAs vias or deep mesas in GaAs or GaN waveguide structures.

More Details

Information systems vulnerability: A systems analysis perspective

Wyss, Gregory D.

Vulnerability analyses for information systems are complicated because the systems are often geographically distributed. Sandia National Laboratories has assembled an interdisciplinary team to explore the applicability of probabilistic logic modeling (PLM) techniques (including vulnerability and vital area analysis) to examine the risks associated with networked information systems. The authors have found that the reliability and failure modes of many network technologies can be effectively assessed using fault trees and other PLM methods. The results of these models are compatible with an expanded set of vital area analysis techniques that can model both physical locations and virtual (logical) locations to identify both categories of vital areas simultaneously. These results can also be used with optimization techniques to direct the analyst toward the most cost-effective security solution.

More Details

Reduced polarization decay due to carrier in-scattering in a semiconductor active medium

Chow, Weng W.

The in-scattering processes, which reduce the decay of the active medium polarization, should be included in a consistent treatment of semiconductor laser gain. The in-scattering processes affect the laser gain by decreasing the influence of the high k-states, which contribute absorption to the spectrum. A theory, based on the semiconductor-Bloch equations with the effects of carrier-carrier scattering treated at the level of the quantum kinetic equations in the Markov limit, predicts gain spectra that do not exhibit absorption below the renormalized band gap, in agreement with experiment. When compared to gain calculations where the in-scattering contribution is neglected, the theory predicts markedly different properties for intrinsic laser parameters, such as peak gain, gain bandwidth, differential gain and carrier density at transparency, especially at low carrier densities.

More Details

Are safety, security, and dependability achievable in software?

Fletcher, S.K.

Critical software must be safe, secure, and dependable. Traditionally, these have been pursued as separate disciplines. This presentation looks at the traditional approaches and highlights commonalities and differences among them. Each can learn from the history of the others. More importantly, it is imperative to seek a systems approach which blends all three.

More Details

Validation of EMP bounds

Warne, Larry K.

Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

More Details

Biomedical technology prosperity game{trademark}

Berman, M.

Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

More Details

NMR spectroscopic investigations of surface and interlayer species on minerals, clays and other oxides

Cygan, Randall T.

The behavior of chemical species adsorbed on solid surfaces and exchanged into clay interlayers plays a significant role in controlling many natural and technologically important processes, including rheological behavior, catalysis, plant growth, transport in natural pore fluids and those near anthropogenic hazardous waste sites, and water-mineral interaction. Adsorption and exchange reactions have been the focus of intense study for many decades. Only more recently, however, have there been extensive spectroscopic studies of surface species. Among the spectroscopic methods useful for studying surface and exchanged species (e.g., infrared, X-ray photoelectron spectroscopy [XPS] and X-ray absorption spectroscopy [XAS]), nuclear magnetic resonance spectroscopy (NMR) has the considerable advantage of providing not only structural information via the chemical shift and quadrupole coupling constant but dynamical information in the Hz-mHz range via lineshape analysis and relaxation rate measurements. It is also possible to obtain data in the presence of a separate fluid phase, which is essential for many applications. This paper illustrates the range of applications of NMR methods to surface and exchanged species through review of recent work from our laboratory on Cs in clay interlayers and Cs, Na and phosphate adsorbed on oxide surfaces. The substrate materials used for these experiments and our long-term objectives are related to problems of geochemical interest, but the principals and techniques are of fundamental interest and applicable to a wide range of technological problems.

More Details

Visualization and animation as a technique to assist in the construction of high assurance software

Winter, V.L.

The software construction process consists of a mixture of informal and formal steps. By their very nature, informal steps cannot be formally verified. Empirical evidence suggests that a majority of software errors originate in the informal steps of the software development process. For this reason, when constructing high assurance software, it is essential that a significant effort be made to increase one`s confidence (i.e., to validate) that the informal steps have been made correctly. Visualization and animation can be used to provide an `intuitive proof` that the informal steps in the software construction process are correct. In addition, the formal portion of software construction often permits/demands artistic (informal) decisions to be made (e.g., design decisions). Such decisions often have unexpected/unforeseen consequences that are only discovered later in the development process. Visualization and animation techniques can be brought to bear on this aspect of the software construction process by providing a better intuitive understanding of the impact of the informal decisions that are made in program development. This increases the likelihood that undesirable decisions can be avoided or at least detected earlier in the development process.

More Details

Physical protection cooperation between US Department of Energy national laboratories and Special Scientific and Production State Enterprise (Eleron) of Russia

Williams, J.D.

US DOE national laboratories and Russian institutes are becoming increasingly cooperative in support of nonproliferation of nuclear materials. This paper describes completed projects, current work, and areas of possible future cooperation between US laboratories and a Russian Ministry of Atomic Energy (MINATOM) entity, Special Scientific and Production State Enterprise (SNPO). The Kurchatov Institute, SNPO, and the US national laboratories jointly completed a physical protection system (PPS) for a facility housing two reactors at Kurchatov Institute within a very short time frame in 1994. Spin- off projects from this work resulted in a US-witnessed acceptance test of the new system adhering to a procedure adopted in Russia, and visits by DOE laboratories` personnel to SNPO`s sensor development and test facilities at Dubna and Penza. SNPO was one of the MINATOM sites at which Lawrence Livermore National Laboratory and Sandia National Laboratories (SNL) conducted a vulnerability assessment training course. Current cooperative projects include additional physical protection upgrades at Kurchatov where SNPO is involved as an installer and supplier of sensors, alarm display, video, and fiber optic equipment. Two additional contracts between SNL and SNPO result in information on Russian sensor performance and cost and an exchange of US and Russian sensors. Russian sensors will be tested in the United States,a nd US sensors will be tested in Russia. Pacific Northwest Laboratory administers a contract to document the process of certifying physical protection equipment for use at MINATOM facilities. Recent interest in transportation security has opened a new area of cooperation between the national laboratories and SNPO. Future projects are expected to include SNPO participation in physical protection upgrades at other locations in Russia, pedestrian and vehicle portal development, positive personnel identifier testing, and the exchange and testing of additional equipment.

More Details

Comparison of passive soil vapor survey techniques at a Tijeras Arroyo site, Sandia National Laboratories, Albuquerque, New Mexico

Eberle, C.S.; Wade, W.M.; Tharp, T.; Brinkman, J.

Soil vapor surveys were performed to characterize the approximate location of soil contaminants at a hazardous waste site. The samplers were from two separate companies and a comparison was made between the results of the two techniques. These results will be used to design further investigations at the site.

More Details

Momentum transfer in indirect explosive drive

Fischer, S.H.

Material which is not in direct contact with detonating explosives may still be driven by the explosion through impact by driven material or by attachment to driven material. In such circumstances the assumption of inelastic collision permits estimation of the final velocity of an assemblage. Examples of the utility of this assumption are demonstrated through use of Gurney equations. The inelastic collision calculation may also be used for metal parts which are driven by explosives partially covering the metal. We offer a new discounting angle to account for side energy losses from laterally unconfined explosive charges in cases where the detonation wave travels parallel to the surface which is driven.

More Details

Precision guided parachute LDRD final report

Gilkey, Jeffrey C.

This report summarizes the results of the Precision Guided Parachute LDRD, a two year program at Sandia National Laboratories which developed a Global Positioning System (GPS) guided parachute capable of autonomous flight and landings. A detailed computer model of a gliding parachute was developed for software only simulations. A hardware in-the-loop simulator was developed and used for flight package system integration and design validation. Initial parachute drop tests were conducted at Sandia`s Coyote Canyon Cable Facility, followed by a series of airdrops using Ross Aircraft`s Twin Otter at the Burris Ranch Drop Zone. Final flights demonstrated in-flight wind estimation and the capability to fly a commanded heading. In the past, the cost and logistical complexity of an initial navigation system ruled out actively guiding a parachute. The advent of the low-cost, light-weight Global Positioning System (GPS) has eliminated this barrier. By using GPS position and velocity measurements, a guided parachute can autonomously steer itself to a targeted point on the ground through the use of control drums attached to the control lanyards of the parachute. By actively correcting for drop point errors and wind drift, the guidance accuracy of this system should be on the order of GPS position errors. This would be a significant improvement over unguided airdrops which may have errors of a mile or more.

More Details

LDRD final report on gas separation by fullerene membranes

Schirber, J.E.

This LDRD (Laboratory Directed Research and Development) project was funded for two years beginning in October 1992 (FY93) and was designed as a multidisciplinary approach to determining the structural and physical properties of C{sub 60} intercalated with various gases. The purpose of the study was to evaluate the relative permeation and diffusion of various gases with an ultimate goal of finding an effective filter for gas separations. A variety of probes including NMR, X-ray and neutron diffraction; IR spectroscopy, thermogravimetric analysis and mass spectroscopy were employed on C{sub 60} impregnated with a number of gases including O{sub 2}, N{sub 2}, Ar, Ne, H{sub 2}, NO and CH{sub 4}. In order to increase the absorption and decrease the effective time constraints for bulk samples, these gases were intercalated into the C{sub 60} using pressures to several kbar. The results of these measurements which were quite encouraging for separation of O{sub 2} and N{sub 2} and for H{sub 2} from N{sub 2} led to 17 manuscripts which have been published in peer reviewed journals. The abstracts of these manuscripts are shown below along with a complete citation to the full text.

More Details

A simplified model of aerosol removal by natural processes in reactor containments

Powers, Dana A.

Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

More Details

Advanced materials development for multi-junction monolithic photovoltaic devices

Dawson, L.R.

We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

More Details

Solar heat pipe testing of the Stirling thermal motors 4-120 Stirling engine

Andraka, Charles E.

Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. A 25kW electric system takes advantage of existing Stirling-cycle engines and existing parabolic concentrator designs. In previous work, the concentrated sunlight impinged directly on the heater head tubes of the Stirling Thermal Motors (STM) 4-120 engine. A Sandia-designed felt-metal-wick heat pipe receiver was fitted to the STM 4-120 engine for on-sun testing on Sandia`s Test Bed Solar Concentrator. The heat pipe uses sodium metal as an intermediate two-phase heat transfer fluid. The receiver replaces the directly-illuminated heater head previously tested. The heat pipe receiver provides heat isothermally to the engine, and the heater head tube length is reduced, both resulting in improved engine performance. The receiver also has less thermal losses than the tube receiver. The heat pipe receiver design is based on Sandia`s second-generation felt-wick heat pipe receiver. This paper presents the interface design, and compares the heat pipe/engine test results to those of the directly-illuminated receiver/engine package.

More Details

Formation and polymerization of cyclic disilsesquioxanes

Loy, Douglas A.

Sol-gel polymerication of {alpha}, {omega}-bis(triethoxysilyl)alkanes normally leads to alkylene-bridged polysilsesquioxanes in the form of insoluble, highly crosslinked polymeric gels. Hydrolysis of the six ethoxide groups on each monomer gives silanols that then condense to form a network of siloxane bonds. Unlike most Sol-gel precursors, these flexible hydrocarbon-bridged monomers can participate not only in intermolecular condensation reactions that lead to polymeric networks, but in intramolecular condensation reactions leading to cyclic disilsesquioxanes as well. Partitioning between these two reaction manifolds should be an important determinant of the manner in which the network polymer is assembled and, be an important determinant of the manner in which the network polymer is assembled and, ultimately, the final morphologies of the crosslinked gels. The relative importance of the two pathways should be dependent on a variety of factors, including the reaction mechanism (acid or base catalysis), the concentration of {alpha}, {omega}(triethoxysilyl)alkane and, most importantly for this study, the length of the alkylene bridging group.

More Details

Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

Jow, H.N.

The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

More Details

Risk-based assessment of the surety of information systems

Jansma, R.M.

When software is used in safety-critical, security-critical, or mission-critical situations, it is imperative to understand and manage the risks involved. A risk assessment methodology and toolset have been developed which are specific to software systems and address a broad range of risks including security, safety, and correct operation. A unique aspect of this methodology is the use of a modeling technique that captures interactions and tradeoffs among risk mitigators. This paper describes the concepts and components of the methodology and presents its application to example systems.

More Details

Electrical discharge machining of type-N(f) microwave connectors

Haushalter, R.J.

A particular out-of-specification mechanical dimension on Type-N(f) [Type-N(female)] microwave connectors sometimes disqualifies otherwise perfectly acceptable microwave devices from being used in calibration systems. The Miniature Machining Group at Sandia National Laboratories applied a technique called Electrical Discharge Machining (EDM) to quickly and economically machine these devices without disassembly. In so doing, they facilitated the use of existing components without the need to purchase new devices. The technique also improves an uncertainty of calibration known as Mismatch Uncertainty by optimizing the reflection coefficient of the calibration test port. This effects a reduction in overall calibration uncertainties.

More Details

Sandia National Laboratories/New Mexico Environmental Baseline update--Revision 1.0

Wolff, Theodore A.

This report provides a baseline update to provide the background information necessary for personnel to prepare clear and consise NEPA documentation. The environment of the Sandia National Laboratories is described in this document, including the ecology, meteorology, climatology, seismology, emissions, cultural resources and land use, visual resources, noise pollution, transportation, and socioeconomics.

More Details

Sensitivity of hydrological performance assessment analysis to variations in material properties, conceptual models, and ventilation models

Sobolik, Steven

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface- based and underground testing. Analyses have been performed to support the design of an Exploratory Studies Facility (ESF) and the design of the tests performed as part of the characterization process, in order to ascertain that they have minimal impact on the natural ability of the site to isolate waste. The information in this report pertains to sensitivity studies evaluating previous hydrological performance assessment analyses to variation in the material properties, conceptual models, and ventilation models, and the implications of this sensitivity on previous recommendations supporting ESF design. This document contains information that has been used in preparing recommendations for Appendix I of the Exploratory Studies Facility Design Requirements document.

More Details

High definition ultrasound imaging for battlefield medical applications

Kwok, Kwan S.

A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

More Details

Security Equipment and Systems Certification Program (SESCP)

Steele, Basil J.

Sandia National Laboratories (SNL) and Underwriters Laboratories, Inc., (UL) have jointly established the Security Equipment and Systems Certification Program (SESCP). The goal of this program is to enhance industrial and national security by providing a nationally recognized method for making informed selection and use decisions when buying security equipment and systems. The SESCP will provide a coordinated structure for private and governmental security standardization review. Members will participate in meetings to identify security problems, develop ad-hoc subcommittees (as needed) to address these identified problems, and to maintain a communications network that encourages a meaningful exchange of ideas. This program will enhance national security by providing improved security equipment and security systems based on consistent, reliable standards and certification programs.

More Details

Corrosion of SA1388-1 diodes

Krska, C.; Stimetz, C.; Braithwaite, J.; Sorensen, R.; Hlava, P.

After 5 y storage at Allied Signal, a subassembly with SA1388-1 diodes failed testing and the cause was an unacceptable current leak rate in one of the diodes. This was traced to a CuS deposit in a single production lot of diodes; however only about 0.3% failed the specification. A study was performed to determine the cause and potential long-term significance of this problem. Probable cause was determined to be the P-bearing braze material not being compatible with the Ag immersion plating solution (cyanide-based) and to the storage environment containing sulfur.

More Details

Laser engineered net shaping (LENS) for the fabrication of metallic components

Griffith, Michelle L.

Solid free form fabrication is a fast growing automated manufacturing technology that has reduced the time between initial concept and fabrication. Starting with CAD renditions of new components, techniques such as stereolithography and selective laser sintering are being used to fabricate highly accurate complex 3-D objects using polymers. Together with investment casting, sacrificial polymeric objects are used to minimize cost and time to fabricate tooling used to make complex metal casting. This paper describes recent developments in LENS{trademark} (Laser Engineered Net Shaping) to fabricate the metal components {ital directly} from CAD solid models and thus further reduce the lead time. Like stereolithography or selective sintering, LENS builds metal parts line by line and layer by layer. Metal particles are injected into a laser beam where they are melted and deposited onto a substrate as a miniature weld pool. The trace of the laser beam on the substrate is driven by the definition of CAD models until the desired net-shaped densified metal component is produced.

More Details

Processing of aluminum 7075-T73 components after prolonged storage

Guilinger, Terry R.

Three years ago, production requirements for a T73-tempered aluminium 7075 (Al 7075-T73) component were curtailed and the ``in-process`` parts were stored. During recent attempts to complete processing, visible defects were discovered in this component. Defects at such an early stage in the 20+ year lifetime of the component pose reliability concerns. Chemical and microstructural analysis, mechanical testing, and corrosion evaluation were performed to determine the impact of the defects on material properties.

More Details

Design and analysis of the PBFA-Z vacuum insulator stack

Spielman, Rick

Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.

More Details

ECR, ICP, and RIE plasma etching of GaN

Shul, Randy J.

The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

More Details

The use of fuzzy mathematics in subjective uncertainty analysis

Cooper, James A.

We have been investigating the applicability of fuzzy mathematics in safety assessments (PSAs). It is a very efficient approach, both in terms of methodology development time and program execution time. Most importantly, it processes subjective information subjectively, not as if it were based on measured data. One of the most useful results of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy mathematics analysis and conventional PSA analysis. This difference is due to subtle factors inherent in the choice of probability distributions for modeling uncertainty. Since subjective uncertainty, stochastic variability, and dependence are all parts of most practical situations, a technique has been developed for combining the three effects. The methodology is based on hybrid numbers and on Frechet inequality dependency bounds analysis. Some new results have also been obtained in the areas of efficient disjoint set representations and constrained uncertainty and variability analysis.

More Details
Results 94701–94750 of 99,299
Results 94701–94750 of 99,299