Publications

Results 96401–96425 of 99,299

Search results

Jump to search filters

Modified Noise Power Ratio testing of high resolution digitizers

Mcdonald, Timothy S.

A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

More Details

A three-dimensional fast solver for arbitrary vorton distributions

Strickland, James H.

A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.

More Details

ETPRE User`s Manual Version 3.00

Roginski, R.J.

ETPRE is a preprocessor for the Event Progression Analysis Code EVNTRE. It reads an input file of event definitions and writes the lengthy EVNTRE code input files. ETPRE`s advantage is that it eliminates the error-prone task of manually creating or revising these files since their formats are quite elaborate. The user-friendly format of ETPRE differs from the EVNTRE code format in that questions, branch references, and other event tree components are defined symbolically instead of numerically. When ETPRE is executed, these symbols are converted to their numeric equivalents and written to the output files using formats defined in the EVNTRE Reference Manual. Revisions to event tree models are simplified by allowing the user to edit the symbolic format and rerun the preprocessor, since questions, branch references, and other symbols are automatically resequenced to their new values with each execution. ETPRE and EVNTRE have both been incorporated into the SETAC event tree analysis package.

More Details

Radiant heat testing of the H1224A shipping/storage container

Harding, David C.

H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

More Details

Large scale obscuration and related climate effects open literature bibliography

Zak, Bernard D.

More Details

Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

Zak, Bernard D.

More Details

Primary Standards Laboratory report, 2nd half 1993

Levy, Walbert G.T.

The Primary Standards Laboratory (PSL) operates a system-wide primary standards and calibration program for the US Department of Energy, Albuquerque Field Office (DOE/AL). The PSL mission is as follows: to develop and maintain primary standards; to calibrate electrical, physical, and radiation reference standards for customer laboratories (DOE/AL nuclear weapon contractors); to conduct the technical surveys and measurement audits of these laboratories; and to recommend and implement system-wide improvements. This report summarizes activities of the PSL for the second half of 1993 and provides information pertinent to the operation of the DOE/AL Standards and Calibration Program. Specific areas covered include development projects, improvement projects, calibration and special measurements, surveys and audits, customer service, and significant events. Appendixes include certifications and reports;; a discussion about commercial calibration laboratories; PSL memoranda (PSLM); test numbers from the National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards (NBS); and DOE/PSL memoranda on the Standards and Calibration Program with emphasis on traceability of PSL calibrations.

More Details

In situ evaporation of lithium for LEVIS ion source

Gerber, B.

This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

More Details

Integrated environmentally compatible soldering technologies. Final report

Hosking, F.M.; Frear, D.R.; Iman, R.L.; Keicher, D.M.; Lopez, E.P.; Peebles, H.C.; Sorensen, N.R.; Vianco, P.T.

Chemical fluxes are typically used during conventional electronic soldering to enhance solder wettability. Most fluxes contain very reactive, hazardous constituents that require special storage and handling. Corrosive flux residues that remain on soldered parts can severely degrade product reliability. The residues are removed with chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or other hazardous solvents that contribute to ozone depletion, release volatile organic compounds into the atmosphere, or add to the solvent waste stream. Alternative materials and processes that offer the potential for the reduction or elimination of cleaning are being developed to address these environmental issues. Timing of the effort is critical, since the targeted chemicals will soon be heavily taxed or banned. DOE`s Office of Environmental Restoration and Waste Management (DOE/EM) has supported Sandia National Laboratories` Environmentally Conscious Manufacturing Integrated Demonstration (ECMID). Part of the ECM program involves the integration of several environmentally compatible soldering technologies for assembling electronics devices. Fluxless or {open_quotes}low-residue/no clean{close_quotes} soldering technologies (conventional and ablative laser processing, controlled atmospheres, ultrasonic tinning, protective coatings, and environmentally compatible fluxes) have been demonstrated at Sandia (SNL/NM), the University of California at Berkeley, and Allied Signal Aerospace-Kansas City Division (AS-KCD). The university demonstrations were directed under the guidance of Sandia staff. Results of the FY93 Soldering ID are presented in this report.

More Details

An annotated summary of the Information Model Design Procedure (IMDP)

Becker, S.D.

This presentation documents the essential elements of the IMDP as applied at Sandia National Laboratories/New Mexico. The IMDP is an adaptation of the Natural-Language Information Analysis Methodology (NIAM) of G. M. Nijssen. The underlying purpose of both of these methodologies is to provide a formal, reproducible, and verifiable approach to specifying the information requirements of an information system. The IMDP spans the specification process from initial scoping; through verbalization of problem-domain facts, specification of constraints, and subtype analysis; and finally to application of a formal algorithm for developing a fifth-normal-form relational database design.

More Details

Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

Allen, Mark S.

The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

More Details

Characterization of latent-heat-storage salts for use in rechargeable sodium/sulfur batteries

Armijo, J.R.

The properties of candidate phase-change materials for use in a thermal management system for sodium/sulfur batteries were characterized. The experimental procedures used are presented along with a comprehensive description of the results. The principal properties were measured with differential scanning calorimetry and included heat-of-fusion and melting-point temperature. In addition, relevant thermal properties and compatibility with containment materials were studied. Recently, one of the salts studied was successfully incorporated into a prototype sodium/sulfur battery.

More Details

PROJECT 56 in retrospect

Jones, R.D.; Compton, M.L.; Hollister, J.F.

Nuclear weapons are designed to ensure that an accidental explosion will not result in a significant nuclear yield. In 1956 and again in 1960, a series of tests was conducted in the Coyote Test Field on Kirtland AFB to study the scattering of nuclear material from such an event. Simulated nuclear devices with depleted uranium were used in the tests.

More Details

Safety analysis of optically ignited explosive and pyrotechnic devices

Merson, John A.

The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

More Details

MELCOR 1.8.2 assessment: The MP-1 and MP-2 late phase melt progression experiments

Tautges, Timothy J.

MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment program, MELCOR has been used to model the MP-1 and MP-2 experiments, which provided data for late-phase melt progression in PWR geometries. Core temperature predicted by MELCOR were within 250--500 K of measured data in both MP-1 and MP-2. Relocation in the debris bed and metallic crust regions of MP-2 was predicted accurately compared to PIE data. Temperature gradients in lower portions of the test bundle were not predicted well in both MP-1 and MP-2, due to the lack of modeling of the heat transfer path to the cooling jacket in those portions of the test bundles. Fifteen sensitivity studies were run on various core (COR), control volume hydrodynamics (CVH) and heat structures (HS) package parameters. No unexpected sensitivities were found, and in particular there were no sensitivities to reduced time step, finer nodalization or to computer platform. Calculations performed by the DEBRIS and TAC2D codes for MP-1 and MP-2 showed better agreement with measured data than those performed by MELCOR. This was expected, through, due to the fully 2-dimensional modeling used in the other codes.

More Details

Phase-locked arrays of vertical-cavity surface-emitting lasers

Warren, Mial E.

Vertical Cavity Surface-Emitting Lasers (VCSELs) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability and potential for low cost. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than 10-15 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is to form coupled or phase-locked, two-dimensional arrays of VCSELs that are individually single-transverse mode. The authors have fabricated and characterized both photopumped and electrically injected two-dimensional VCSEL arrays with apertures over 100 microns wide. Their work has led to an increased understanding of these devices and they have developed new types of devices, including hybrid semiconductor/dielectric mirror VCSEL arrays, VCSEL arrays with etched trench, self-aligned, gold grid contacts and arrays with integrated phase-shifters to correct the far-field pattern.

More Details

Minutes of the third annual workshop on chromate replacements in light metal finishing

Guilinger, Terry R.

Goal of the workshop was to bring together coating researchers, developers, and users from a variety of industries (defense, automotive, aerospace, packaging) to discuss new coating ideas from the perspective not only of end user, but also the coating supplier, developer, and researcher. The following are included in this document: workshop agenda, list of attendees, summary of feedback, workshop notes compiled by organizers, summaries of Sessions II and IV by session moderators, and vugraphs and abstracts.

More Details

Fracture-matrix interaction in Topopah Spring Tuff: Experiment and numerical analysis

Glass, R.J.; Tidwell, V.C.; Flint, A.L.; Peplinski, W.; Castro, Y.

Fracture-matrix interaction is investigated through combined physical and numerical experimentation. Two slabs of Topopah Spring Tuff are mated to form a vertical saw cut fracture to which water is supplied. X-ray imaging is used to obtain the matrix porosity field and transient saturation fields as water moves from the fracture into the matrix. Porosity, hydraulic conductivity, and pressure/saturation relations of the matrix are measured on small cores taken from adjacent rock. Correlations between hydraulic properties and porosity are developed and modeled. Numerical simulations using TOUGH2 are accomplished with a series of property fields of increasing detail. Property fields are modeled using the measured porosity field divided into 1, 3, 5, 11, and 21 porosity groups with the hydraulic properties assigned from the developed correlations and the average porosity within each group. Comparison with experimental results allows us to begin to evaluate current matrix property measurement techniques, specific matrix property models, property estimation procedures, and effects of matrix property variability.

More Details

Some results from the second iteration of total-system performance assessment for Yucca Mountain

Wilson, Michael L.

The second preliminary total-system performance assessment for the potential radioactive-waste-repository site at Yucca Mountain has recently been completed. This paper summarizes results for nominal aqueous and gaseous releases using the composite-porosity flow model. The results are found to be sensitive to the type of unsaturated-zone flow, to percolation flux and climate change, to saturated-zone dilution, to container-wetting processes and container-corrosion processes, to fuel-matrix alteration rate and radionuclide solubilities (especially for {sup 237}Np), and to bulk permeability and retardation of gaseous {sup 14}C. These are areas that should be given priority in the site-characterization program. Specific recommendations are given in the full report of the study.

More Details

JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

Biffle, J.H.; Blanford, M.L.

JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

More Details

Thermal and seismic impacts on the North Ramp at Yucca Mountain

Jung, Joseph

The impacts of thermal and seismic loads on the stability of the Exploratory Studies Facility North Ramp at Yucca Mountain were assessed using both empirical and analytical approaches. This paper presents the methods and results of the analyses. Thermal loads were first calculated using the computer code STRES3D. This code calculates the conductive heat transfer through a semi-infinite elastic, isotropic, homogeneous solid and the rafts thermally-induced stresses. The calculated thermal loads, combined with simulated earthquake motion, were then modeled using UDEC and DYNA3D, numerical codes with dynamic simulation capabilities. The thermal- and seismic-induced yield zones were post-processed and presented for assessment of damage. Uncoupled bolt stress analysis was also conducted to evaluate the seismic impact on the ground support components.

More Details

Construction monitoring activities in the ESF starter tunnel

Pott, John

In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

More Details

Superconducting Technology Program: Sandia 1993 annual report

Roth, E.P.

Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

More Details

CUBIT mesh generation environment. Volume 1: Users manual

Sjaardema, Gregory D.; Owen, Steven J.

The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.

More Details

Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, borehole LA-1, core {number_sign}8

Wawersik, W.R.; Zimmerer, D.J.

Tejas Power Company requested that facilities in the Rock Mechanics Laboratory at Sandia National Laboratories be used to assess the time-dependent properties of rock salt from the Jennings dome in Acadia Parish, Louisiana. Nominally 2.5-inch diameter slat core from borehole LA-1, core 8 (depth 3924.8 to 3837.8 ft; 1196.8--1197.1 m) was provided to accomplish two tasks: (1) Using the smallest possible number of experiments, evaluate the tendency of Jennings salt to undergo time-dependent deformation (creep) under constant applied stresses, and compare the creep of Jennings salt with creep data for rock salt from other locations. (2) Assess the applicability of published laboratory-derived creep properties for rock salt from several bedded and domal sites in finite element analyses concerning the design of new gas storage caverns in the Jennings dome. The characterization of Jennings salt followed the same strategy that was applied in earlier laboratory experiments on core from the Moss Bluff dome near Houston, Texas. This report summarizes the relevant details of five creep experiments on a sample from depth 3927.5 ft, the results obtained, and how these results compared with laboratory creep measurements gathered on rock salt from other locations including the West Hackberry, Bryan Mound and Moss Bluff domes. The report also considers the estimates of specific creep parameters commonly used in numerical engineering design analyses.

More Details
Results 96401–96425 of 99,299
Results 96401–96425 of 99,299