Alternate organometallic Sb sources are being investigated to improve the characteristics of InSb grown by MOCVD. InSb grown using trimethylindium (TMIn) and trimethylantimony (TMSb) or triethylantimony (TESb) yielded similar quality materials under similar growth conditions. InSb grown using triethylindium (TEIn) and TESB under similar growth conditions yielded very poor quality n-type material. Three new organometallic Sb sources, triisopropyl-antimony (TIPSb), tris(dimethylamino)antimony (TDMASb), and tertiarybutyldimethylantimony (TBDMSb) are being investigated. Growth of InSb using TIPSb, TDMASb, or TBDMSb and TMIn was investigated over 350 to 475{degrees}C. InSb grown from TDMASb had similar properties to InSb grown from TMIn and TMSb when using a similar temperature and V/III ratio range. Growth rates of InSb using TMIn and either TIPSb or TBDMSb at temperatures {le} 425{degrees}C were proportional to both TMIn flow rate and temperature. Surface morphology of InSb grown using either TIPSb or TBDMSb was rough for growth temperatures {le} 425{degrees}C; this may be due to complex decomposition and methyl groups on surface. The InSb with the highest mobility was grown at 400{degrees}C and a V/III ratio of 3 using TIPSb. It was n-type with a carrier concentration of 2.5 {times} 10{sup 15} cm{sup {minus}3} and a mobility of 78,160 cm{sup 2}/Vs at 77 K. Both n- and p-type InSb were grown using TBDMSb with mobilities up to 67,530 and 7773 cm{sup 2}/Vs, respectively at 77 K. Mobility for InSb using either TIPSb or TBDMSb was optimized by going to lower temperatures, pressures, V/III ratios; however, surface morphology improved with higher temperature, pressure, V/III ratio. High mobility InSb with smooth surfaces at T {le} 425{degrees}C was not obtained with TIPSb or TBDMSb and TMIn.
We present the use of an STM to make quantitative observations of time-dependent mass flow associated with the decay of two-dimensional clusters on the Au(lll) surface. When formed and observed in air, layered islands with well-defined edges located on larger terraces are generally found to decay in such a way that their areas decrease linearly in time over periods ranging from minutes to several hours depending on the island size. This is in contrast to the behavior of similar features formed and observed under ultra high vacuum conditions, which do not appear to decay over experimental periods of several days. The linear decay is consistent with models that have been used previously to describe growth of 2-dimensional clusters on surfaces. We discuss possible decay mechanisms`, and the role that adsorbates may play in influencing the decay.
In support of the UST, WeDID, VOC/Non-Arid, and VOC/Arid, and VOC/Arid Integrated Demonstrations, organic contaminants and nitrates in Hanford Underground Storage Tank (UST) wastes, polymeric organics in weapon components, and chlorocarbon soil contaminants have been destroyed by exposure to high-temperature steam during bench tests with a quartz reactor and full-scale tests that used the Synthetica Detoxifier, a commercial one-ton-per-day steam reforming waste destruction system. Reactivation of Granular Activated Carbon (GAC) in the Detoxifier and Thermal Gravimetric Analyses (TGA) of the decomposition of sodium nitrate have also been performed.
We have successfully grown ZnMnTe alloys by molecular beam epitaxy using GaAs as a substrate. Bulk MnTe has the wurtzite crystal structure but the structural phase of the material was confirmed to be zinc-blende by standard {theta}-2{theta} x-ray diffraction techniques. The composition was also determined using x-ray diffraction techniques. Manganese concentration was also estimated from magnetization measurements taken as a function of temperature. Magnetoluminescence studies were performed at 1.4K on the acceptor-bound exciton in the semimagnetic semiconductor ZnMnTe alloys. As expected, the photoluminescence peak energy decreased with increasing magnetic field.
At some landfills, hazardous wastes were placed into disposal pits with other waste oils. Volatile organic wastes, such as cleaning solvents, when combined with oil are much more difficult to remove from the soils because the oil makes the volatile organic chemical evaporate much slower. The typical vacuum extraction remediation method could become a lengthy campaign. Since all chemicals evaporate faster when they are heated, if the contaminated soil could be heated, the chemicals would be easier to remove from the soil. By using heating techniques developed by the Oil and Gas Industry to enhance the removal of oil and gas resources from the soil, the problem of removing contamination from the soils could be solved. The Thermal Enhanced Vapor Extraction System (TEVES) demonstration will combine vacuum vapor extraction technology with powerline frequency soil heating and radiofrequency soil heating to accelerate the soil decontamination process. The premise that soil heating technology can actually reduce the costs of soil decontamination is complicated by the high capital costs of the soil heating equipment and the cost of electrode installation. By performing this field demonstration, Sandia will be able to collect the information needed to see if this new technology will improve the decontamination of soils.
Sandia National Laboratories is a large multiprogram Research and Development laboratory which is operated by a contractor for the US Department of Energy. In the Laboratories, lasers are both the subject of research and the tools that are used in other research, development, and testing activities. Since 1979, laser safety training has been the primary focus of the Laboratories` laser safety program. Approximately 1 100 personnel have been trained in formal courses during that time period. The formal course, presented on site by a contractor, consists of two full days of instruction. The course contents include the following topics: Laser technology and safety overview; Federal and ANSI laser standards summaries; Biological effects of laser radiation; Classification of lasers; Laser hazard analysis; Review of ANSI Z136.1 control measures; Laser eye protection. Recent emphasis on regulatory requirements, conduct of operations, and quality management has revealed a need to change the laser safety training curriculum. A new course for users of low power lasers (Class 2 and 3a) is being developed. A refresher course, a management awareness (self-study) course, and major changes in the current course are planned.
A solar photocatalytic process has been under development at both Sandia National Laboratories and the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute). This process uses solar ultraviolet light to activate a titanium dioxide catalyst which oxidizes organic contaminants in water. In the summer of 1991, a solar photocatalytic detoxification of water system was installed and tested at a California Superfund Site located at Lawrence Livermore National Laboratory. The site was designated a Superfund Site because of widespread groundwater contamination which resulted from the release of chlorinated solvents, principally trichloroethylene, when the site was a Naval Air Station in the early 1940s. The objectives of these experiments were to measure the effects of process variables and the process efficiency in an actual remediation setting, to collect experimental data and operating experience in photocatalytic oxidation of organic contaminants, to develop accurate models of the system operation and to develop control strategies.
We have developed a video detection algorithm for measuring the residue left on a printed circuit board after a soldering process. Oblique lighting improves the contrast between the residue and the board substrate, but also introduces an illumination gradient. The algorithm uses the Boundary Contour System/Feature Contour System to produce an idealized clean board image by discounting the illuminant, detecting trace boundaries, and filling the trace and substrate regions. The algorithm then combines the original input image and ideal image using mathematical models of the normal and inverse Weber Law to enhance the residue on the traces and substrate. The paper includes results for a clean board and one with residue.
The Materials Interface Interaction Tests (MIIT) program involves the comparative performance-evaluation testing of multiple US and foreign nuclear waste glasses (nonradioactive), potential canister and overpack metals, brine, and geologic materials in the rock salt repository environment at the Waste Isolation Pilot Plant (WIPP) facility. We emplaced about 2000 materials specimens onto fiftn, separate test assemblies and exposed them to a heated, salt-brine environment at the WIPP for multi-year periods. We successfully terminated the in situ conduct of the MIIT in July 1991, after five years of testing, and retrieved all samples for posttest laboratory analyses. These 5-year glass and metal samples, along with samples previously retrieved after 0.5, 1, and 2 years, are being analyzed in multiple international laboratories, in a cooperative testing effort. Individual test participants will present available laboratory results, and interpretations, on MIIT specimens in this workshop. Our focus in this paper is to summarize technical details and repository-relevant observations on the in situ conduct, sampling, and termination operations of the MIIT experimental program. Such information should be useful for the interpretation of the laboratory-based analyses. This information also will be relevant and instructive for other organizations contemplating, planning, or conducting additional materials-related, in situ tests.
A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4{degree}C and 23{degree}C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1{degree}C and 6{degree}C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16{degree}C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases.
Magnetic force microscopy (MFM) has been applied to image currents in internal IC conductors. We present a model for the MFM imaging of IC currents, describe MFM signal generation, and demonstrate the ability to analyze current direction and magnitude with a sensitivity of {approximately} 1 mA dc and {approximately} 1 {mu}A ac. Our experimental results are a significant improvement on the 100 mA ac resolution previously reported using an electron beam to detect IC currents [1].
The Waste Isolation Pilot Plant: (WIPP) in southeastern New Mexico is being developed by the US Department of Energy as a disposal facility for transuranic waste. In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP. The ordered triple- representation for risk proposed by Kaplan and Garrick is used to provide a clear conceptual structure for this PA. This presentation describes how the preceding representation provides a basis in the WIPP PA for (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of the complementary cumulative distribution functions required in comparisons with the US Environmental Protection Agency`s standard for the geologic disposal of radioactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the WIPP completed in December of 1991 are used for illustration.
As applications for hybrid circuits and multichip modules create demand for higher density circuits and higher power components, new substrate materials are required to deal with the heat generated on the circuit. Sandia National Laboratories is developing diamond substrate technology to meet the requirements of high thermal conductivity. Thin film processes were developed and characterized to delineate conductor-resistor networks on free standing diamond substrates having fine line gold conductors and low and high sheet resistivity resistors. Thin film hybrid circuit technology was developed on CVD-processed, polycrystalline diamond substrates having as-deposited surface finishes as well as those with polished surfaces. Conductors were defined by pattern plating gold and resistors were processed from sputtered tantalum nitride films which were deposited to sheet resistivities of 5 and/or 100 ohms per square. Resistor films on diamond substrates were evaluated for Temperature Coefficient of Resistance (TCR), stability with time and temperature, and trimmability using YAG laser processing. Plated gold conductors were patterned on diamond to feature sizes of 25 microns and successfully tested for adhesion and bondability. Advanced YAG laser trimming techniques were developed to allow resistor trims on both low and high value resistors to within 1% of desip value while maintaining required resistor stability, new trim techniques were needed to offset the carbonization of diamond in the laser trim area. Reliability studies were carried out on the diamond thin film networks which showed them to compare favorably with the same thin film technology on alumina substrates.
Photocreation mechanisms and properties of nitrogen dangling bonds in amorphous hydrogenated silicon nitride (a-SiN{sub x}:H) thin films are investigated. We find that the creation kinetics are strongly dependent on the post-deposition anneal; this thermal process can be described by a simple exponential function which yields an activation energy of 0.8 eV. The compositional dependence of the nitrogen dangling bond center suggests that its energy level lies close to the valence band edge, in agreement with theoretical calculations. This energy level position can explain why a-SiN{sub x}:H films often become conducting following a high post-deposition anneal.
Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses previous experience to speed up future performance. It is a learning algorithm suitable for incrementally-changing environments such as those encountered in manufacturing of evolving products and waste-site remediation. The algorithm extends our previous work for stationary environments in two directions: For minor environmental change, an object-attached experience abstraction scheme is introduced to increase the flexibility of the learned experience; for major environmental change, an on-demand experience repair scheme is also introduced to retain those experiences that remain valid and useful. In addition to presenting this algorithm, we identify three other variants with different repair strategies. To analyze the respective performance of these algorithms, we develop an analytic model that quantifies and relates training effort, experience value and utility, and environmental change through intuitive terms of energy and work. It is a general and simple model that should be very useful in characterizing other types of learning processes as well. Using this model, we formalize the concept of incremental change, and prove the optimality of our proposedalgorithm under such change. Empirically, we also characterize the performance curve of each variant, confirm our theoretical optimality results, and demonstrate the practicality of our algorithm.
A method of solving the two-phase fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented.
The restoration of environmentally contaminated sites at DOE facilities has become a major effort in the past several years. The variety of wastes involved and the differing characteristics have driven the development of new restoration and monitoring technologies. One of the new remediation technologies is being demonstrated at the Savannah River Site near Aiken, South Carolina. In conjunction with this demonstration, a new technology for site characterization and monitoring of the remediation process has been applied by Sandia National Laboratories.
We used surface-profile data taken with a noncontact laser profilometer to determine the aperture distribution within a natural fracture and found the surfaces and apertures to be isotropic. The aperture distribution could be described equally well by either a normal or a lognormal distribution, although we had to adjust the standard deviation to `fit` the data. The aperture spatial correlation varied over different areas of the fracture, with some areas being much more correlated U= others. The fracture surfaces did not have a single fractal dimension over all length scales, which implied that they were not self-similar. We approximated the saturated flow field in the fracture by solving a finite-difference discretization of the fluid-flow continuity equation in two dimensions. We then calculated tracer breakthrough curves using a particle-tracking method. comparing the breakthrough curves obtained using both coarse- and fine-resolution aperture data (0.5- and 0.05-mm spacing between points, respectively) over the same subset of the fracture domain suggests that the spacing between the aperture data points must be less than the correlation length to obtain accurate predictions of fluid flow and tracer transport. In the future, we will perform tracer experiments and numerical modeling studies to determine exactly how fine the aperture data resolution must be (relative to the correlation length) to obtain accurate predictions.
A method is described for parallelizing molecular dynamics (MD) simulations by block-decomposing the matrix of bonded and non-bonded force computations. It is particularly useful for organic simulations (polymers, proteins) because unlike spatial-decomposition methods, it requires no geometric information about the simulation domain. Because its communication cost scales as N/{radical}P. rather than N as in the all-to-all broadcast or ring-exchange techniques commonly used in this type of MD simulation, larger numbers of processors can be used effectively, yielding greater parallel speed-ups.
Two major initiatives are underway in the US that are creating a significant financial impact on both the US taxpayer and on users of electric power. First, the US Department of Energy (DOE) has been tasked with cleaning-up the defense complex. This task is managed under the direction of the Office of Environmental Restoration and Waste Management (EM) of the DOE. The waste that EM must address includes radioactive, hazardous, and mixed that consists of both radioactive and hazardous constituents. Second, the DOE is required by the Nuclear Waste Policy Act (NWPA) to take title to commercial nuclear spent fuel assemblies starting in 1998. The DOE Office of Civilian Radioactive Waste Management (OCRWM) was established to carry out this charter. Since a final repository is not scheduled for opening until 2010 at the earliest, the DOE is planning on providing a Monitored Retrievable Storage (MRS) facility for centralized storage to bridge the time gap between 1998 and 2010. The NWPA requires that nuclear utilities pay a fee into a specific fund that Congress uses to pay the DOE for the development of the MRS, the transportation system, and the repository. This fund, along with the EM budget, constitutes a multi-billion dollar effort to manage DOE nuclear waste and to store and dispose of commercial spent nuclear fuel. These two seemingly unrelated problems have aspects of commonality that can be considered for the benefit of both programs, the US taxpayer, and the utility rate payer. Both programs are the responsibility of the DOE, and both will require engineered packages for storage, transportation, and disposal of the EM waste and commercial spent fuel. Rather than using specialized systems for each step (storage, transport, and disposal), a concept for a Universal Container System has been developed that could potentially simplify the overall waste management system, reduce expensive handling operations, and reduce total system cost.
Inadvertent alloying of Cu braze metal can compromise metal/ceramic seals. Electron microprobe analyses have quantified alloying of Cu brazes in metal/ceramic feedthroughs. Pin material and processing parameters above 1084C both affect alloying levels. Using either Kovar or Ni-plated 316L stainless steel pins limits alloying compared to Palco pins. Minimizing the time during which the braze is molten also avoids excessive alloying. The original thickness of the Ni plating on the Mo-Mn metallization of the ceramic also influences the alloying content of these brazes. Metal/ceramic brazes made with long brazing cycles, Mo-Mn metallization, and Kovar components grow a layer of Mo{sub 6}(Fe{sub 3.5}CO{sub 3.5}){sub 7} on the metallization. Layer thicknesses observed do not appear to compromise joint integrity. Ni additions of approximately 10 and 20 wt.% to Cu apparently increases the stress required for stress relaxation during cooldown. to maintain creep rates required for stress relaxation during cooldown. Relative to unalloyed Cu, this strengthening effect tends to increase as temperature is decreased.
In this paper we investigate the applicability of the feature extraction mechanisms found in the neurophysiology of mammals to the problem of object recognition in synthetic aperture radar imagery. Our approach is to present multiple views of objects to be recognized to a two-stage self-organizing neural network architecture. The first stage, a two-layer Neocognitron, performs feature extraction in each layer The resulting feature vectors are presented to the second stage, an ART-2A classifier self-organizing neural network which clusters the features into multiple object categories. The feature extraction operators resulting from the self-organization process are compared to the feature extraction mechanisms found in the neurophysiology of vision. In a previous paper, the Neocognitron was trained on raw SAR imagery. The architecture was able to recognize a simulated vehicle at arbitrary azimuthal orientations at a single depression angle while rejecting clutter as well as other vehicles. Feature extraction on raw imagery yielded features that were robust but very difficult to interpret. In this paper we report the results of some new experiments in which the self-organization process is applied separately to shadow and bright returns from objects to be recognized. Feature extraction on shadow returns yield oriented contrast edge operators suggestive of bipartite simple cells observed in the striate cortex of mammals. Feature extraction on the specularity patterns in bright returns yield a collection of operators resembling a twodimensional Haar basis set. We compare the performance of the earlier two-stage neural network trained on raw imagery with a modified network using the new feature set.
The Mixed Waste Landfill Integrated Demonstration (MWLID) is testing noninvasive site characterization methods at several locations, including the Chemical Waste Landfill (CWL) at Sandia National Laboratories. The CWL comprises shallow, unlined pits that were used for the disposal of acids, oils, solvents, and inorganic compounds from 1962 until the CWL was closed in 1985. The soils of the landfills are alluvial, predominantly sand, gravels and cobbles with small quantities of silts and clays. The focus of this study is an unlined chromic acid pit (UCAP). The UCAP pit is rectangular (approximately 4 {times} 10 m), which reportedly received unknown volumes of chromium in the form of chromic acid (liquid) and other hazardous materials. At this location, we have demonstrated a continuous waveform (CW) system for site characterization. During this year, we will also utilize a crossborehole pulsed radar system. Both methods are sensitive to variations in either electrical conductivity or dielectric constant in the soils or host rock at a waste site. These earth properties are some of the most responsive geophysical indicators of metallic, acidic and water-based subsurface contaminants.