Publications

Results 92526–92550 of 99,299

Search results

Jump to search filters

Software Reliability Cases: The Bridge Between Hardware, Software and System Safety and Reliability

Peercy, David E.

High integrity/high consequence systems must be safe and reliable; hence it is only logical that both software safety and software reliability cases should be developed. Risk assessments in safety cases evaluate the severity of the consequences of a hazard and the likelihood of it occurring. The likelihood is directly related to system and software reliability predictions. Software reliability cases, as promoted by SAE JA 1002 and 1003, provide a practical approach to bridge the gap between hardware reliability, software reliability, and system safety and reliability by using a common methodology and information structure. They also facilitate early insight into whether or not a project is on track for meeting stated safety and reliability goals, while facilitating an informed assessment by regulatory and/or contractual authorities.

More Details

Status of the Boeing Dish Engine Critical Component Project

Brau, H.W.; Diver, R.B.; Nelving, H.; Stone, K.W.

The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based upon the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.

More Details

Fabrication and Characterization of PZT Thin-Film on Bulk Micromachined Si Motion Detectors

Garino, Terry J.

Motion detectors consisting of Pb(Zr{sub x}Ti{sub (1{minus}x)})O{sub 3} (PZT) thin films, between platinum electrodes, on micromachined silicon compound clamped-clamped or cantilever beam structures were fabricated using either hot KOH or High Aspect Ratio Silicon Etching (HARSE) to micromachine the silicon. The beams were designed such that a thicker region served as a test mass that produced stress at the top of the membrane springs that supported it when the object to which the detector was mounted moved. The PZT film devices were placed on these membranes to generate a charge or a voltage in response to the stress through the piezoelectric effect. Issues of integration of the PZT device fabrication process with the two etching processes are discussed. The effects of PZT composition and device geometry on the response of the detectors to motion is reported and discussed.

More Details

Fabrication of MEMS Devices by Powder-Filling into DXRL-Formed Molds

Garino, Terry J.

We have developed a variety of processes for fabricating components for micro devices based on deep x-ray lithography (DXRL). Although the techniques are applicable to many materials, we have demonstrated them using hard (Nd{sub 2}Fe{sub 14}B) and soft (Ni-Zn ferrite) magnetic materials because of the importance of these materials in magnetic micro-actuators and other devices and because of the difficulty fabricating them by other means. The simplest technique involves pressing a mixture of magnetic powder and a binder into a DXRL-formed mold. In the second technique, powder is pressed into the mold and then sintered to densify. The other two processes involve pressing at high temperature either powder or a dense bulk material into a ceramic mold that was previously made using a DXRL mold. These techniques allow arbitrary 2-dimensional shapes to be made 10 to 1000 micrometers thick with in-plane dimensions as small as 50 micrometers and dimensional tolerances in the micron range. Bonded isotropic Nd{sub 2}Fe{sub 14}B micromagnets made by these processes had an energy product of 7 MGOe.

More Details

Sandia National Laboratories Institutional Plan: FY 1999-2004

Garber, D.P.

This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

More Details

Numerical Modeling Tools for the Prediction of Solution Migration Applicable to Mining Site

Vaughn, Palmer

Mining has always had an important influence on cultures and traditions of communities around the globe and throughout history. Today, because mining legislation places heavy emphasis on environmental protection, there is great interest in having a comprehensive understanding of ancient mining and mining sites. Multi-disciplinary approaches (i.e., Pb isotopes as tracers) are being used to explore the distribution of metals in natural environments. Another successful approach is to model solution migration numerically. A proven method to simulate solution migration in natural rock salt has been applied to project through time for 10,000 years the system performance and solution concentrations surrounding a proposed nuclear waste repository. This capability is readily adaptable to simulate solution migration around mining.

More Details

Robots Working with Hazardous Materials

SWE; the magazine the Society of Women Engineers

Fahrenholtz, J.

While many research and development activities take place at Sandia National Laboratories' Intelligent Systems and Robotics Center (ISRC), where the "rubber meets the road" is in the ISRC'S delivered systems. The ISRC has delivered several systems over the last few years that handle hazardous materials on a daily basis, and allow human workers to move to a safer, supervisory role than the "hands-on" operations that they used to perform. The ISRC at Sandia performs a large range of research and development activities, including development and delivery of one-of-a-kind robotic systems for use with hazardous materials. Our mission is to create systems for operations where people can't or don't want to perform the operations by hand, and the systems described in this article are several of our first-of-a-kind deliveries to achieve that mission.

More Details

Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points

Crossno, Patricia J.

Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Often, however, points are generated such that there is additional information available to the reconstruction algorithm. We present a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that fills itself in.

More Details

Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

Shapovalov, V.I.

Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

More Details

Production of Gas-Solid Structures in Aluminum and Nickel Alloys by Gasar Processing

Baldwin, Michael D.

Experimental data on directional and bulk solidification of hydrogen-charged samples of aluminum alloy A356 and nickel alloy Inconel 718 are discussed. The solidification structure of the porous zone is shown to be dependent on many process variables. Of these variables, hydrogen content in the melt prior to solidification, and furnace atmospheric pressure during solidification play the decisive role. Also important are the furnace atmosphere composition, the solidification velocity, and the temperature distribution of the liquid metal inside the mold.

More Details

ESR Process Instabilities while Melting Pipe Electrodes

Melgaard, David K.

With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

More Details

Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

Martino, Anthony

The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

More Details

Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He

Materials Research Society Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

The role of additive noble gases He, Ar and Xe to C&based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with C12/Xe, while the highest rates for AIN and GaN were obtained with C12/He. Efficient breaking of the 111-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of -80 for InN to GaN and InN to AIN were obtained.

More Details

Behavior of W and WSi(x) Contact Metallization on n- and p- Type GaN

Materials Research Society Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

Sputter-deposited W-based contacts on p-GaN (N{sub A} {approximately} 10{sup 18} cm{sup {minus}3}) display non-ohmic behavior independent of annealing temperature when measured at 25 C. The transition to ohmic behavior occurs above {approximately} 250 C as more of the acceptors become ionized. The optimum annealing temperature is {approximately} 700 C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700 C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to {approximately} 900 C.

More Details

Magnetic-Field-Induced V-Shaped Quantized Conductance Staircase in a Double-Layer Quantum Point Contact

Physical Review B (Rapid Communication)

Lyo, Sungkwun K.

We show that the low-temperature conductance (G) of a quantum point contact consisting of ballistic tunnel-coupled double-layer quantum well wires is modulated by an in-layer magnetic field B{sub {parallel}} perpendicular to the wires due to the anticrossing. In a system with a small g factor, B{sub {parallel}} creates a V-shaped quantum staircase for G, causing it to decrease in steps of 2e{sup 2}/{Dirac_h} to a minimum and then increase to a maximum value, where G may saturate or decrease again at higher B{sub {parallel}}'s. The effect of B{sub {parallel}}-induced mass enhancement and spin splitting is studied. The relevance of the results to recent data is discussed.

More Details

Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers

Journal of the Americna Chemical Society

Loy, Douglas A.

Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.

More Details

Laboratory Simulation of Response to a Shock Environment

Simmermacher, Todd W.

The focus of this work will be to simulate a harsh, blast environment on a space structure. Data from a reverse Hopkinson bar (RHB) test is used to generate the response to a symmetric, distributed load. The RHB generates a high-amplitude, high-frequency content, concentrated pulse that excites components at near-blast levels. The transfer functions generated at discrete points, with the RHB, are used to generate an experimental model of the structure, which is then used in conjunction with the known pressure distribution, to estimate the component response to a blast. The shock spectrum of the predicted response and the actual response compared well in two of the three cases presented.

More Details

Accident Sequence Precursor Program Large Early Release Frequency Model Development

Duran, Felicia A.

The objectives for the ASP large early release frequency (LERF) model development work is to build a Level 2 containment response model that would capture all of the events necessary to define LERF as outlined in Regulatory Guide 1.174, can be directly interfaced with the existing Level 1 models, is technically correct, can be readily modified to incorporate new information or to represent another plant, and can be executed in SAPHIRE. The ASP LERF models being developed will meet these objectives while providing the NRC with the capability to independently assess the risk impact of plant-specific changes proposed by the utilities that change the nuclear power plants' licensing basis. Together with the ASP Level 1 models, the ASP LERF models provide the NRC with the capability of performing equipment and event assessments to determine their impact on a plant's LERF for internal events during power operation. In addition, the ASP LERF models are capable of being updated to reflect changes in information regarding the system operations and phenomenological events, and of being updated to assess the potential for early fatalities for each LERF sequence. As the ASP Level 1 models evolve to include more analysis capabilities, the LERF models will also be refined to reflect the appropriate level of detail needed to demonstrate the new capabilities. An approach was formulated for the development of detailed LERF models using the NUREG-1150 APET models as a guide. The modifications to the SAPHIRE computer code have allowed the development of these detailed models and the ability to analyze these models in a reasonable time. Ten reference LERF plant models, including six PWR models and four BWR models, which cover a wide variety of containment and nuclear steam supply systems designs, will be complete in 1999. These reference models will be used as the starting point for developing the LERF models for the remaining nuclear power plants.

More Details

Theory of wire number scaling in wire-array Z pinches

Physics of Plasmas

Desjarlais, Michael P.

Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (> 200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. © 1999 American Institute of Physics.

More Details

Rapid thermal processing of implanted GaN up to 1500°C

MRS Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

GaN implanted with donor(Si, S, Se, Te) or acceptor (Be, Mg, C) species was annealed at 900-1500°C using AlN encapsulation. No redistribution was measured by SIMS for any of the dopants and effective diffusion coefficients are ≤2×10-13 cm2 · s-1 at 1400°C, except Be, which displays damage-enhanced diffusion at 900°C and is immobile once the point defect concentration is removed. Activation efficiency of ∼90% is obtained for Si at 1400°C. TEM of the implanted material shows a strong reduction in lattice disorder at 1400-1500°C compared to previous results at 1100°C. There is minimal interaction of the sputtered AlN with GaN under our conditions, and it is readily removed selectively with KOH.

More Details

Thin-film silica sol-gels doped with ion responsive fluorescent lipid bilayers

Proceedings of SPIE - The International Society for Optical Engineering

Sasaki, Darryl Y.

A metal ion sensitive, fluorescent lipid-bilayer material (5% PSIDA/DSPC) was successfully immobilized in a silica matrix using a tetramethoxysilane (TMOS) sol-gel procedure. The sol-gel immobilization method was quantitative in the entrapment of self-assembled lipid-bilayers and yielded thin films for facile configuration to optical fiber platforms. The silica matrix was compatible with the solvent sensitive lipid bilayers and provided physical stabilization as well as biological protection. Immobilization in the silica sol-gel produced an added benefit of improving the bilayer's metal ion sensitivity by up to two orders of magnitude. This enhanced performance was attributed to a preconcentrator effect from the anionic surface of the silica matrix. Thin gels (193 micron thickness) were coupled to a bifurcated fiber optic bundle to produce a metal ion sensor probe. Response times of 10 - 15 minutes to 0.1 M CuCl2 were realized with complete regeneration of the sensor using an ethylenediaminetetraacetic acid (EDTA) solution.

More Details

Coupled simulations of mechanical deformation and microstructural evolution using polycrystal plasticity and Monte Carlo Potts models

Materials Research Society Symposium - Proceedings

Battaile, Corbett C.

The microstructural evolution of heavily deformed polycrystalline Cu is simulated by coupling a constitutive model for polycrystal plasticity with the Monte Carlo Potts model for grain growth. The effects of deformation on boundary topology and grain growth kinetics are presented. Heavy deformation leads to dramatic strain-induced boundary migration and subsequent grain fragmentation. Grain growth is accelerated in heavily deformed microstructures. The implications of these results for the thermomechanical fatigue failure of eutectic solder joints are discussed.

More Details

GaN metal oxide semiconductor field effect transistors

Solid-State Electronics

Baca, Albert G.

A GaN based depletion mode metal oxide semiconductor field effect transistor (MOSFET) was demonstrated using Ga2O3(Gd2O3) as the gate dielectric. The MOS gate reverse breakdown voltage was >35 V which was significantly improved from 17 V of Pt Schottky gate on the same material. A maximum extrinsic transconductance of 15 mS/mm was obtained at Vds = 30 V and device performance was limited by the contact resistance. A unity current gain cut-off frequency, fT, and maximum frequency of oscillation, fmax of 3.1 and 10.3 GHz, respectively, were measured at Vds = 25 V and Vgs = -20 V.

More Details

Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells

Physical Review B - Condensed Matter and Materials Physics

Chow, Weng W.

Microscopic calculations of the absorption and luminescence spectra are presented for wide bandgap Ga1-xInxN/GaN quantum well systems. Whereas structures with narrow well widths exhibit the usual excitation-dependent bleaching of the exciton resonance without shifting spectral position, a significant blueshift of the exciton peak is obtained for wider quantum wells. This blueshift, which is also present in the excitation-dependent luminescence spectra, is attributed to the interplay between the screening of a strain induced piezoelectric field and the density dependence of many-body Coulomb effects. The calculations also show an over two orders of magnitude increase in the spontaneous electron-hole-pair lifetime with well width, due to the reduction of the electron-hole wave function overlap in the wider wells. The resulting decrease in spontaneous emission loss is predicted to lead to improved threshold properties in wide quantum well lasers. © 1999 The American Physical Society.

More Details

Coarsening of the Sn-Pb solder microstructure in constitutive model-based predictions of solder joint thermal mechanical fatigue

Journal of Electronic Materials

Vianco, Paul T.

An expression for the coarsening rate of the Pb-rich phase particles was determined through isothermal aging experiments and comparative literature data as: λ = λo+{[4.10×10-5 e-11023/T+15.6×10-8 e-3123/T (dγ/dt)]t}0.256 where γo and γ are the initial and final mean Pb-rich particle diameters, respectively (mm); T is temperature (°K); t is time (s); and dγ/dt is the strain rate (s-1). The phase coarsening behavior showed good agreement with previous literature data from isothermal aging experiments. The power-law exponent, p, for the Pb-rich phase size coarsening kinetics: γp-γop≈t increased from a value of 3.3 at the low aging temperature regime (70-100 °C) to a value of 5.1 at the high temperature regime (135-170 °C), suggesting that the number of short-circuit diffusion paths had increased with further aging. This expression provides an important basis for the microstructurally-based, constitutive equation used in the visco-plastic model for TMF in Sn-Pb solder. The revised visco-plastic model was exercised using a through-hole solder joint configuration. Initial data indicate a satisfactory compatibility between the coarsening expression and the constitutive equations.

More Details
Results 92526–92550 of 99,299
Results 92526–92550 of 99,299