Publications

Results 95601–95650 of 96,771

Search results

Jump to search filters

Numerical simulation of magma energy extraction

Hickox, C.E.

The Magma Energy Program is a speculative endeavor regarding practical utility of electrical power production from the thermal energy which reside in magma. The systematic investigation has identified an number of research areas which have application to the utilization of magma energy and to the field of geothermal energy. Eight topics were identified which involve thermal processes and which are areas for the application of the techniques of numerical simulation. These areas are: (1) two-phase flow of the working fluid in the wellbore, (2) thermodynamic cycles for the production of electrical power, (3) optimization of the entire system, (4) solidification and fracturing of the magma caused by the energy extraction process, (5) heat transfer and fluid flow within an open, direct-contact, heat-exchanger, (6) thermal convection in the overlying geothermal region, (7) thermal convection within the magma body, and (8) induced natural convection near the thermal energy extraction device. Modeling issues have been identified which will require systematic investigation in order to develop the most appropriate strategies for numerical simulation. It appears that numerical simulations will be of ever increasing importance to the study of geothermal processes as the size and complexity of the systems of interest increase. It is anticipated that, in the future, greater emphasis will be placed on the numerical simulation of large-scale, three-dimensional, transient, mixed convection in viscous flows and porous media. Increased computational capabilities, e.g.; massively parallel computers, will allow for the detailed study of specific processes in fractured media, non-Darcy effects in porous media, and non-Newtonian effects. 23 refs., 13 figs., 1 tab.

More Details

Sensitivity studies for gas release from the Waste Isolation Pilot Plant (WIPP)

Webb, Stephen W.

Sensitivity studies have been conducted for the gas release from the Waste Isolation Pilot Plant (WIPP) using the TOUGH2 computer code with performance measures of peak repository pressure and gas migration distance at 1000 years. The effect of formation permeabilities including impermeable halite, two-phase characteristic curves including different models and residual saturations, and other variations was studied to determine their impact on the performance of the WIPP repository. 15 refs., 7 figs., 2 tabs.

More Details

Effective waste minimization in an R D setting: The program at Sandia National Laboratories

Reilly, Hugh E.

An important aspect of environmentally-conscious operations is adoption of an aggressive waste minimization program. This paper describes the waste minimization and pollution prevention program at Sandia National Laboratories. Although Sandia's approach is patterned after the generic waste minimization models proposed by the Environmental Protection Agency and the Department of Energy, the specifics of implementation, and the potential for payoff, are influenced by the R D nature of Sandia's work. Key aspects of the program are discussed, including why Sandia is developing and conducting the program; objectives; elements of the program; our approach to implementation; the magnitude of the undertaking; and the expected payoff. 3 refs., 2 figs.

More Details

New half-voltage and double phase operation of the Hermes III linear induction accelerator

Mikkelson, Kenneth A.

The standard operating mode produces bremsstrahlung with an endpoint energy of about 18 MeV. This paper describes a new mode with a 8.5 MeV endpoint energy and the same standard mode pulse characteristics achieved by operating only half of the accelerator at full charge with the advantage of minimal setup time. An extension of the new half-voltage mode is to use the other half of the accelerator for delivering a second pulse at a later time with the same technique. The double pulse mode is ideal for beam generation which requires a long interpulse time in the millisecond regime. The beam characteristics of the two half-voltage pulses are nearly identical with the nominal radiation pulse full width at half maximum of 21 ns and 10--90 risetime of 11 ns recorded by the same Compton diode radiation monitors on instruments triggered 30 ms apart.

More Details

Shock characterization of nitrocellulose-based gun propellant

Weirick, L.J.

A series of shock-loading experiments on a nitrocellulose-based (NC-based) gun propellant was conducted using a light-gas gun. The intent of this work was to characterize the shock sensitivity of the gun propellant. The initial objectives were to obtained Hugoniot data and to investigate the pressure threshold at which a reaction initiates. For the Hugoniot/reaction threshold experiments, 1/4-length grains of propellant were mounted on the front of projectiles and were impacted onto either polymethylmethacrylate (PMMA), fused silica or sapphire targets at velocities as high as 1.4 mm/{mu}s, the upper limit of the gun. The particle velocity data obtained from the VISAR (Velocity Interferometer System for Any Reflector) records for the propellant fit a Hugoniot curve found in the Russian literature for a double-base, NC-nitroglycerine propellant. The density initial bulk sound velocity, and empirical parameter S values for the gun propellant were 1.63 g/cm{sup 3}, 1.70 mm/{mu}s and 1.85, respectively. VISAR data were also used to obtained the ignition threshold pressures of the gun propellant. Reactions were observed at impact pressures of 2.6 GPa and above. 5 refs., 6 figs., 1 tab.

More Details

Sequential deposition etch techniques for the selective deposition of tungsten

Fleming, J.G.

We report on the use of a deposition/etch approach to the loss of selectivity problem, using high activity fluorine chemistries in the etch step. Proof-of-concept experiments were initially performed in a hot wall system, the excellent results obtained lead us to prove out the concept in a commercially available cold wall Genus reactor. We observed that WF{sub 6} is ineffective as an etchant of W. The technique has been able to produce perfectly selective depositions 1 micron thick in both hot wall, and cold wall, systems. Sheet resistivity values and film morphology are good. 9 refs., 4 figs., 1 tab.

More Details

Improved selection in totally monotone arrays

Mansour, Y.; Park, J.K.; Schieber, B.; Sen, S.

This paper's main result is an O(({radical}{bar m}lgm)(n lg n) + mlg n)-time algorithm for computing the kth smallest entry in each row of an m {times} n totally monotone array. (A two-dimensional A = a(i,j) is totally monotone if for all i{sub 1} < i{sub 2} and j{sub 1} < j{sup 2}, < a(i{sub 1},j{sub 2}) implies a(i{sub 2},j{sub 1})). For large values of k (in particular, for k=(n/2)), this algorithm is significantly faster than the O(k(m+n))-time algorithm for the same problem due to Kravets and Park. An immediate consequence of this result is an O(n{sup 3/2} lg{sup 2}n)-time algorithm for computing the kth nearest neighbor of each vertex of a convex n-gon. In addition to the main result, we also give an O(n lg m)-time algorithm for computing an approximate median in each row of an m {times} n totally monotone array; this approximate median is an entry whose rank in its row lies between (n/4) and (3n/4) {minus} 1. 20 refs., 3 figs.

More Details

Compile-time partitioning of a non-strict language into sequential threads

Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing 1991

Hoch, J.E.; Davenport, D.M.; Grafe, V.G.; Steele, K.M.

Presents a practical algorithm for partitioning a program into sequential threads. A thread is a sequence of instructions, possibly including branches, that can be scheduled as an indivisible unit on a von Neumann-like processor. The primary target of the proposed compilation strategy is large-scale parallel systems that rely on multithreading at the processor level to tolerate long communication latencies. As such, the algorithm incorporates a mechanism to balance the desire to maximize thread length with the desire to expose useful high-level parallelism. It can also exploit known dependency information (gathered through subscript analysis, for example). Although this paper focuses on non-strict (but not lazy) language semantics, the partitioning analysis is equally well suited to a non-strict language on a sequential machine or a strict language on a parallel multithreaded machine.

More Details

The Silver Bullet Skunk Works: Holistic design of the answering system 1300

Andrews, A.K.

The Silver Bullet Skunk Works, and experimental product realization team at AT T Consumer Products, designed and shipped a new telephone answering system to market in eight months, approximately one year faster than previous AT T products of similar complexity. This paper outlines the Design for X'' (DFX) philosophies and the team structure that enabled the group to accelerate the Product Realization Process. The Answering System 1300, developed in record time, was a successful product that met its schedule and cost objectives, and sold out its entire high-volume manufacturing run. Lessons learned from the Skunk Works experience have since been applied to other development activities in AT T Consumer Products. 3 figs.

More Details

Fusion welding of refractory metals

Robino, Charles V.

The refractory metals of Groups 5B and 6B and their alloys display a variety of unique physical and mechanical characteristics in addition to their high melting points. In turn, these characteristics make these materials strong candidates for severe service and specialized applications. However, these materials also present a variety of challenges with respect to both fabrication weldability and the in-service behavior of weldments, many of which are related to the dominant effects of interstitial impurities. This work reviews current understanding of the physical and joining metallurgy of these metals and their alloys with emphasis on fusion welding. Of specific interest are the role of impurities and alloy chemistry in fabrication and service weldability, the material processing route, eg. vacuum melting vs. powder metallurgy, the importance of welding process procedures and variables, weldment mechanical properties, and fracture behavior. Specific examples from the various alloy systems are used to illustrate general metallurgical and joining characteristics of this class of materials. 34 refs., 14 figs., 3 tabs.

More Details

Overlooked fundamentals of resistance welding

Knorovsky, Gerald A.

Resistance Welding (RW) has been known for about a century and in common use for much of that time. Much knowledge has been accumulated concerning many aspects of the process. However, upon examining contemporary RW handbooks, a few subjects that have been overlooked'' were found. Usually, this oversight will not be important; however, when the RW process is being applied at its limits, these factors may become critical. In this paper we will discuss such overlooked'' factors as the Peltier and Thomson effects, and the dynamics of welding head motions and how they are affected by the current pulse. Examples taken from sheet metal and microwelding applications will be given as examples. 12 refs., 7 figs., 4 tabs.

More Details

Low volatile organic compound paints

Martinez, F.E.

Increasingly stringent air emission standards in various states has dictated the elimination of engineering finishes which are derived from high volatile organic compound (VOC) paint chemistries. In July 1989, Allied-Signal, Inc., Kansas City Division, Kansas City, Missouri, voluntarily closed its paint facility, due to non-compliance with local air emission standards. The following details the materials selection and evaluations which led to current processing using low VOC paints, which permitted the Allied Signal, Inc., paint facility to achieve compliance and resume operations. 1 tab.

More Details

A probabilistic model of intergranular stress corrosion cracking

Bourcier, R.J.

We have developed a model which utilizes a probabilistic failure criterion to describe intergranular stress corrosion cracking (IGSCC). A two-dimensional array of elements representing a section of a pipe wall is analyzed, with each element in the array representing a segment of grain boundary. The failure criterion is applied repetitively to each element of the array that is exposed to the interior of the pipe (i.e. the corrosive fluid) until that element dissolves, thereby exposing the next element. A number of environmental, mechanical, and materials factors have been incorporated into the model, including: (1) the macroscopic applied stress profile, (2) the stress history, (3) the extent and grain-to- grain distribution of carbide sensitization levels, which can be applied to a subset of elements comprising a grain boundary, and (4) a data set containing IGSCC crack growth rates as function of applied stress intensity and sensitization level averaged over a large population of grains. The latter information was obtained from the literature for AISI 304 stainless steel under light water nuclear reactor primary coolant environmental conditions. The resulting crack growth simulations are presented and discussed. 14 refs., 10 figs.

More Details

Automated edge finishing using an active XY table

Loucks, Clifford S.

Edge finishing and deburring of parts is a tedious operation that should be automated. This paper describes the use of direct-drive XY table in the automated edge finishing of machined parts. The table is faster and more accurate than an articulated robot, thus where planar motion in a small work area is sufficient it is preferable. Hybrid force/position control is used to guide the table (with mounted workpiece) past the tool and maintain the contact force at the desired level. A six-axis force sensor on the tool spindle is used to measure contact force. We identified a dynamic model for the table from experimental measurements and used this model to design a force/position controller for the table. An example application of the table in the deburring of an actual jet engine turbine hub is presented. 5 refs., 12 figs.

More Details

Origin and composition of possible fluids in German and American high- and intermediate-level radioactive waste repositories in domal and bedded salt formations

Brush, Laurence H.

This paper justifies the need for and describes studies of brine chemistry under way for German and American high- and intermediate-level radioactive waste repositories in domal and bedded salt formation. In particular, it discusses the origin and composition of fluids that could enter these repositories and some sampling, modeling, and statistical techniques used to characterize them. 24 refs., 4 figs., 5 tabs.

More Details

Neutron probe monitoring of fluid migration in the Vadose Zone

Stein, C.L.; Mctigue, D.F.; Eaton, R.R.

Historically, characterization of fluid flow and transport of soluble elements in the unsaturated, or vadose, zone has been limited. Until recently, most of the interest in transport of water-soluble pollutants has been focused on aquifer contamination, i.e. saturated conditions. Vadose zone investigations are hampered by a lack of appropriate technology for the necessary measurements; little work has been done to relate laboratory measurements to field-scale effects; and development and validation of computational models has been limited, in part through lack of data. We describe here results of a small-scale field experiment in which existing technology is used to quantify fluid movement following controlled infiltration. 6 refs., 2 figs.

More Details

Laboratory test results of solid state video cameras

Terry, Preston L.

Sandia National Laboratories has considerable experience with video systems used for alarm assessment. Until recently the camera of choice for lighted security applications was the monochrome vacuum tube video camera. However, with recent advancements in the solid state imager technology, the integration of tube cameras in security systems may soon become obsolete. The sensitivity and resolution of solid state imagers is approaching that of vacuum tube imagers. In addition, solid state cameras have a relatively long lifetime and require little maintenance. Initial equipment costs are similar. Due to the increased performance of solid state imagers, Sandia has established an ongoing program to evaluate these cameras. The evaluations are performed mainly to verify manufacturers' specifications for resolution, sensitivity, and signal to noise ratio, which are the critical camera parameters that should be considered when designing video systems. This report defines these parameters, describes the test procedures, and provides test results. 1 figs., 2 tabs.

More Details

Case history: Failure analysis of a CMOS SRAM with an intermittent open contact

Campbell, Ann N.

Analysis of an intermittent failure to write the 1'' state to a particular memory location at low temperature ({minus}55{degree}C) in a 16K {times} 1 CMOS SRAM is presented. The failure was found to be due to an open metallization at a metal-to-silicon contact. The root cause of the failure was poor step coverage of the metallization over an oxide step. A variety of failure analysis techniques including dynamic electron beam analysis at low temperature using a Peltier cold stage were employed to study the intermittently failing SRAM. The failure site was located by using capacitive coupling voltage contrast analysis. PSPICE simulation, light emission microscopy, scanning electron microscopy, and focused-ion beam techniques were used to confirm the failure mechanism and location. The write cycle time of the failed IC was abnormally long, but within the allowable tester limit. The vulnerability of other ICs to failure by open metallization in metal-to-silicon contacts is reviewed. 8 refs., 10 figs., 2 tabs.

More Details

Solid state radioluminescent sources using tritium-loaded zeolites

Renschler, Clifford L.

Zeolite-based tritium lamps are a possible alternative to traditional tritium gas tube light sources. Rare earth luminescing centers may be ion-exchanged into zeolite matrices. Close proximity of tritium atoms to the rare earths can be provided by highly tritiated water sorbed within the pore structure of the zeolite aluminosilicate matrix. Zeolites are optically clear and radiation stable. Light outputs from tritium-loaded zeolites are shown here to exceed 2{mu}W/cm{sup 2}, with good stability. Procedures for obtaining light sources are presented and results are discussed. The possible use of these luminescent materials as process monitors for zeolite absorption columns in tritium service is also discussed. 13 refs., 3 figs.

More Details

Microscopic origin of the light-induced defects in hydrogenated nitrogen-rich amorphous silicon nitride films

Journal of Non-Crystalline Solids

Warren, William L.

The electron photo-excitation from the K- state and its subsequent trapping by K+ state is probably at the origin of the silicon dangling bonds (K0) formation during broad-band UV illumination of the N-rich amorphous silicon nitride films. Because the photo-excited electron will move towards the metal electrode the positive charge is expected to accumulate near the nitride-silicon interface with illumination time. Our data also suggest that the N-H group may be at the origin of the nitrogen dangling bonds creation in N-rich films. © 1991 Elsevier Science Publishers B.V. All rights reserved.

More Details

Today's central receiver power plant

Alpert, D.J.

For 15 years, the United States Department of Energy has worked with industry, both utilities and manufacturers, to develop the technology of solar central receiver power plants. In this type of plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver. The solar energy is collected in the form of a heated fluid, which is used to generate steam to power a conventional turbine generator. For a number of reasons, molten nitrate salt is now the preferred heat transfer fluid. Commercial plants will be sized between 100 and 200 MW. The impetus for developing central receivers comes from their unique advantages: (1) They produce clean, reliable, low-cost electricity; (2) they have practical energy storage that provides a high degree of dispatchability (annually up to 60%) -- without fossil fuels; and, (3) they are environmentally benign. Development efforts around the world have brought the technology to the brink of commercialization: The technical feasibility has been proven, and cost, performance, and reliability can be confidently predicted. Plans are currently being developed for the final steps toward commercial central receiver power plants. 24 refs., 7 figs.

More Details

Methodology to obtain expert information about the conceptual model development process used for performance assessment of waste management sites

Kerl, F.A.; Heger, A.S.; Gallegos, D.P.; Davis, P.A.

To provide a method for addressing the uncertainty associated with conceptual models developed for performance assessment of waste management sites, probabilistic networks have been applied to the conceptual model development process. The application of probabilistic networks provides a graphical representation of the reasoning process that goes into developing conceptual models. Probability tables associated with decision points in the process provide a quantification of the uncertainty that is associated with the resulting conceptual models. To support the development of this probabilistic network, a formal process is being designed and implemented to elicit expert information about the conceptual model development process. This paper discusses the approach to designing this expert judgment elicitation process. 10 refs.

More Details

Teaching engineers to be technical leaders

Conference Record - 7th Biennial IEEE-USA Careers Conference: Change and Competitiveness and Careers

Cannon, T.

Engineers invest several years becoming skilled in the many disciplines necessary to effectively carry out analysis, design and development. This typically includes math, physics, computer science, and special study in their core area of expertise. However, once promoted into management, engineers use less and less of these hard-earned technical skills and find themselves operating in nontechnical arenas in which they have little or no formal training. (The formal training that they do get is often through company-sponsored courses, lacking both the rigor and cohesiveness that they have grown accustomed to in their engineering curriculum.) Often, what they are exposed to are continually varying management doctrines that resemble the flavor of the month, each laying claim to the true secrets of motivation, productivity, and organizational competitiveness. Under such circumstances, it is difficult for the neophyte manager to sort out fact from fancy, and help from hype. It therefore would be helpful to put such theories in perspective and present them in a form most easily digested by technical managers, i.e., from an analytical point of view. This paper attempts to do just that. There are many factors that influence a manager's career progression. One of the most rational factors is how the manager's actions affect the productivity of his or her group. This paper focuses on principles and techniques that a manager can, and should, employ to improve group productivity and enhance his or her opportunities for further advancement. 9 refs.

More Details

The role of anodic dissolution in the stress corrosion cracking of Al-Li-Cu alloy 2090

Buchheit Jr., R.G.; Wall, F.D.; Stoner, G.E.; Moran, J.P.

The short-transverse (S-T) stress corrosion cracking (SCC) behavior of Al-Li-CU alloy 2090 was studied using a static load SCC test technique. Time to failure was measured as a function of applied potential in several different environments. Rapid SCC failures (< 10 hours) were observed only when the following criteria were satisfied: E{sub br, T1} < E{sub applied} < E{sub br, matrix} where potentials refer to the breakaway potentials of the subgrain boundary T{sub 1} (Al{sub 2}CuLi) phase and the {alpha}-Al matrix phase. E{sub br} values were measured using potentiodynamic polarization of bulk materials intended to simulate the individual phases found in the subgrain boundary region. Results strongly suggest an anodic dissolution based SCC mechanism for this alloy where selective dissolution of T{sub 1} on the subgrain boundary is a critical step. The unusual pre-exposure embrittlement phenomenon demonstrated by Al- Li alloys is also shown to be consistent with these simple SCC criteria. 21 refs., 9 figs., 6 tabs.

More Details

The influence of plasma motion on disruption generated runaway electrons

Russo, A.J.

One of the possible consequences of disruptions is the generation of runaway electrons which can impact plasma facing components and cause damage due to high local energy deposition. This problem becomes more serious as the machine size and plasma current increases. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that control circuitry on strongly influence runaway behavior. A comparison of disruption data from several shots on JET and D3-D with model results, demonstrate the effects of plasma motion on runaway number density and energy. 6 refs., 12 figs.

More Details

Benchmarking a Network Storage Service

Kelly, S.M.; Haynes, R.A.; Ernest, M.J.

Benchmarking a network file server introduces some unique considerations over traditional benchmarking scenarios. Since the user is executing on a client system interconnected to the file server, the client and network must be provided for during benchmarking. During a recent procurement action, Sandia National Laboratories was challenged to develop a benchmark suite that would accurately test the network requirements. This paper describes the benchmark design and summarizes the experience gained from the benchmark executions. 8 refs., 2 figs.

More Details

Mode-stirred chamber field statistics: Correlation widths

Boverie, B.

The electromagnetic field in a mode-stirred chamber is a random process. Samples of this random process are random variables. Different realizations of this random variable can be obtained by changing the paddle-wheel angle, changing the frequency, or changing the location at which the sample is taken. Correlation widths can be defined for each of these three variables. For examples, the spatial correlation width is the distance a point sensor must be moved to realize an uncorrelated value of the field (paddle-wheel angle and frequency held constant). Likewise, the paddle-wheel correlation width is the angle through which the paddle wheel must turn to yield an uncorrelated value (location and frequency held constant). The frequency correlation width is the frequency change required to yield an uncorrelated value (location and paddle-wheel angle held constant). These values were determined experimentally for the sandia mode-stirred chamber by sampling the field at equal increments (for each variable) and calculating an autocorrelation function. The autocorrelation function is a random process (because it is calculated from a random process) and must be averaged to determine it width. The correlation widths were found to be less than 0.1{degree} for paddle-wheel angle, 50 kHz for frequency, and half a wavelength for spatial location. 4 refs., 3 figs., 2 tabs.

More Details

sup 139 La NMR and NQR study of the temperature dependent structure of La sub 2 CuO sub 4+. delta

Schirber, James E.

NMR and NQR reveal substantial structural changes in the metallic phase of LA{sub 2}CuO{sub 4+}{delta} which occur below 220 K. The oxygen octahedra in the metallic phase are not tilted at phase separation; upon cooling to 40 K considerable tilt has developed. The low temperature structure is highly disordered. 4 refs., 2 figs.

More Details

Electrooptic effects and photosensitivities of PLZT thin films

Dimos, Duane B.

Although the feasibility of using PZT and PLZT films for optical data processing applications, such as optical storage disks, image comparators, and spatial light modulators, has clearly been established, most of the critical parameters related to the storage and readout processes still need to be evaluated. Optical readout techniques capable of nondestructively determining the value of polarization are based either on the quadratic electrooptic effect or on a photocurrent response. In reflection, large electrooptic retardations (>60{degrees}) have now been achieved with thin PZT films ({approx equal} 0.5 {mu}m) under conditions that optimize interference effects. These results are quite attractive for device applications. Model calculations, based on the equations of reflection ellipsometry, have been used to develop a framework for understanding those results. The magnitude of the photocurrent response has also been used to determine the polarization state. However, the photocurrent always has the same sign, regardless of the sign of the polarization, which suggests the presence of a strong bias field due to at least one of the interfaces. In addition, the accumulation of space charge after a succession of measurements suppresses the photocurrent transient, which severely limits the utility of a photocurrent based readout. 7 refs., 9 figs.

More Details

Melting efficiency in fusion welding

Fuerschbach, Phillip W.

Basic to our knowledge of the science of welding is an understanding of the melting efficiency, which indicates how much of the heat deposited by the welding process is used to produce melting. Recent calorimetric studies of GTAW, PAW, and LBW processes have measured the net heat input to the part thereby quantifying the energy transfer efficiency and in turn permitting an accurate determination of the melting efficiency. It is indicated that the weld process variables can dramatically affect the melting efficiency. This limiting value is shown to depend on the weld heat flow geometry as predicted by analytical solutions to the heat flow equation and as demonstrated by the recent empirical data. A new dimensionless parameter is used to predict the melting efficiency and is shown to correlate extremely well with recent empirical data. This simple prediction methodology is notable because it requires only a knowledge of the weld schedule and the material properties in order to estimate melting efficiency. 22 refs., 16 figs.

More Details

Thermal- and ignition-type steam explosions of single drops of molten aluminum

Nelson, L.S.; Duda, P.M.; Hyndman, D.A.

The contact of aluminum-based melts with liquid water has been shown to be explosive in many experiments performed by the aluminum industry and in several nuclear reactor experiments and accidents. In order to obtain quantitative information relating to the fuel-coolant interactions that might occur with aluminum-based fuel, a laboratory-scale experimental study is being performed at Sandia National Laboratories. The overall objective of this research program is to provide an understanding of the mechanism of steam explosions with the melt compositions expected in several hypothetical core meltdown accident scenarios in production reactors. In this program it has been demonstrated that rapid exothermic metal-water reactions can accompany the steam explosions under certain conditions resulting in enhanced energy release and in the concomitant generation of hydrogen. 4 refs., 2 figs.

More Details

Examination of a cored hydraulic fracture in a deep gas well

Proceedings - SPE Annual Technical Conference and Exhibition

Warpinski, Norman R.

A hydraulic fracture stimulation conducted during 1983-1984 in non-marine, deltaic, Mesaverde strata at a depth of 7100 ft (2164 m) was cored in a deviated well in 1990. The observed fracture consists of two fracture intervals, both containing multiple fracture strands (30 and 8, respectively). While the core had separated across many of the fracture strands during coring, the rock remained intact across 20 of the strands, preserving materials within the fractures. Nine of the remaining intact strands were split open, revealing abundant gel residue on the surfaces of every fracture examined. Of 7 strands associated with major bedding planes, 4 displayed offsets of 1-3 mm at the planes and 3 strands had their growth terminated at the planes, showing the importance of bedding (petrophysical heterogeneities) on fracture propagation. Implications of all these findings for hydraulic fracture design and analysis are also addressed.

More Details

INTEROP achievement award application form. [Sandia National Laboratories' Award Application for Their Computer Network]

Bray, Brian K.

The INTEROP Achievement Award will be given to those customer organizations that make the most effective use of internetworking technology to further their own specific business aims. This paper is an application for this award by Sandia National Laboratories. Given are the network application, topology, and the types of systems to which it is applied.(JEF)

More Details

A method for computing fields near the origin of a cylindrical coordinate system in time domain finite-difference electromagnetic simulations

Pasik, Michael F.

One problem with electromagnetic time domain finite-difference simulations in cylindrical coordinates is the rapidly decreasing characteristic dimension of the cells as r approaches zero. In order to satisfy the Courant stability condition a small time step is needed to insure stability, which is undesirable because it increases the cost of the simulation. In our presentation, we will describe a method which uses a rectangular grid and an annular cylindrical grid which overlap to perform electromagnetic simulations of cylindrical geometries. The two grids are connected by interpolating the field at the grid points of one grid using field values from the second grid. 2 refs.

More Details

Microstructural evolution during the thermomechanical fatigue of solder joints

Frear, D.R.

Solder joints in electronic packages are electrical interconnections that also function as mechanical bonds. The solder often constrains materials of different coefficients of thermal expansion that, when thermal fluctuations are encountered, causes the solder joint to experience cyclical deformation. Due to the catastrophic consequences of electrical or mechanical failure of solder joints, a great deal of work has been performed to develop a better understanding of the metallurgical response of solder joints subjected to thermomechanical fatigue. This work reviews the microstructural and mechanical evolution that occurs in solder joints during thermomechanical fatigue. The eutectic Sn-Pb solder alloy is highlighted. Unlike most materials that experience thermomechanical fatigue, solder is commonly used at temperatures of up to nine-tenths of its melting point. Therefore extensive creep, solid state diffusion, recrystallization and grain growth occur in this alloy resulting in the evolution of a heterogeneous coarsened band through which failure eventually takes place. Two other solder alloys are compared with the Sn-Pb eutectic, a Pb-rich Sn-Pb alloy and a ternary near eutectic (40In-40Sn-20Pb, all alloys are given in wt. %). The Pb-rich alloy is a precipitated single phase matrix that does not evolve during thermomechanical fatigue and subsequently has a shorter lifetime. Conversely, the 40In-40Sn-20Pb solder is a two phase eutectic in which the microstructures refines during thermomechanical fatigue giving it a longer lifetime than the eutectic Sn-Pb solder. The microstructural processes that occur during thermomechanical fatigue and final fracture behavior are discussed for the three solder alloys. 47 refs., 14 figs.

More Details

System requirements for low-earth-orbit launch using laser propulsion

Lawrence, R.J.

The use of ground-based lasers to launch small payloads but large total masses into low-Earth orbit may prove to be the most innovative and potentially economical approach for accomplishing this important mission. Of the several possible schemes for laser propulsion, two are examined: (1) ablative momentum transfer using pulsed lasers; and (2) heat exchanger thrusters in conjunction with CW lasers. For an entry-level payload of {approximately}50 kg it is found that the former yields payload-to-power ratios < 0.5 kg/MW with a requirement for an average laser power of at least 100 MW, whereas the latter might yield 1 to 3 kg/MW with a laser power of several 10s of MW. One of the promising approaches that could yield a driver for such a system is the reactor-pumped laser FALCON, which scales to these power levels with the potential for long run times.

More Details

Power system requirements and selection for the space exploration initiative

AIAA/NASA/OAI Conference on Advanced SEI Technologies, 1991

Biringer, Kent L.

The Space Exploration Initiative (SEI) seeks to reestablish a U. S. program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Specialty Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other government agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as a part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed and results will determine the ultimate technology selections.

More Details

The use of high velocity launchers for scientific and engineering studies

Asay, James R.

Shockwave techniques have been used for decades to study the dynamic states of matter in temperature and pressure regimes inaccessible by other methods. These techniques have been employed in a wide variety of scientific, military, and commercial applications. A principal scientific objective has been to determine high-pressure equations of state (EOS) to ultra-high pressures; pressures of tens of Mbar have been reported for several materials. Most recently, these methods have been used for studies of thermophysical properties under shock compression, including phase transition kinetics, and mechanical properties, such as the high-pressure yield strength. In this paper, a brief discussion of recent developments in high velocity launchers is given. Advances in techniques for subjecting materials to a wide range of loading conditions is presented, including selected illustrations of shockwave measurements to Mbar pressures. 54 refs.

More Details

Constitutive modeling of salt behavior: State of the technology

Munson, Darrell E.

The modern investigation of the thermochemical behavior of salt started in the mid-1930's and, for what appears to be a very narrow discipline, salt mechanics'' has acquired considerable technical depth and sophistication. The last three decades have been especially productive in constitutive model development and laboratory investigations of time-dependent creep behavior. This has been largely due to anticipated use of domal or bedded salt deposits as sites for radioactive waste repositories and to expanded need for hydrocarbon and feedstock storage caverns. Salt is an interesting material, in that it is metal like''; and, therefore, constitutive modeling can draw upon a large body of metal deformation information to arrive at appropriate models of behavior. Testing apparatus and methods have centered on either uniaxial or triaxial compression to obtain steady state and transient creep responses. Flow and fracture potentials have been defined. Validation attempts of the models against field data, although limited, have proved promising. 27 refs.

More Details

Improving mangers' effectiveness

Conference Record - 7th Biennial IEEE-USA Careers Conference: Change and Competitiveness and Careers

James, M.R.

Upward Feedback is a program that gives employees and opportunity to anonymoulsy provide their manager with feedback concerning the manager's job performance. It is an opportunity for managers to receive confidential feedback evaluating their implementation of corporate values and management behaviors as perceived by those who work for them. This feedback can come from employees who report directly to the manager, that is, one level below them (referred to as direct reports), or from those two reporting levels below them (referred to as skip-level reports). Managers then share information with their employees in feedback meetings and develop action plans to address areas of concern. Sandia National Laboratories has developed and implemented an Upward Feedback Pilot Program and follow up survey. This paper discussed the program and the lessons learned.

More Details

Electromagnetic penetration of slot apertures with depth and losses

Warne, Larry K.

Typical aerospace joints lead to apertures which are very narrow and thick. We develop a systematic analytical treatment of this type of aperture (precise conditions of validity given in the text), although the results are also applicable to apertures on a thin conducting body. An antenna integral equation with an equivalent antenna radius is used to describe the voltage across a narrow and thick aperture in a perfectly conducting plane. The result shows the voltage across the aperture has very high Q (quality-factor) resonances, because the equivalent radius is exponentially small. Transmitted power also exhibits similar behavior. When metallic and gasket losses are included, a nonlocal antenna model together with a local transmission line model is used to describe the voltage across the aperture. Good metallic walls, such as aluminum, are found to significantly reduce the penetration of an aperture of typical dimensions. Gaskets with relatively small loss tangents also result in significant penetration reductions. A simple transmission line with uniform loading is used to approximate the governing equation described in. In the lossless limit and for moderate fatness parameter this simple transmission line model is comparable in accuracy to King's three-term theory. The loading of the bolts or hinges is demonstrated to act in many cases as a short. Finally, the low frequency penetration for a narrow slot aperture of arbitrary depth is characterized by the equivalent polarizabilities (dominating longitudinal component) as a function of the ratio of the depth to the width and ratio of the length to the width. A general relationship is shown to exist between the equivalent radius and the transverse line dipole moments of a slot aperture with depth. The longitudinal equivalent polarizabilities of antennas and slot apertures are used to derive a coupling energy bound for a step function EMP. 9 refs., 8 figs.

More Details

Interaction of deuterium with internal surfaces in silicon

Myers, S.M.; Follstaedt, D.M.; Stein, H.J.; Wampler, W.R.

The strength of deuterium bonding to the walls of closed cavities within Si was determined in ion-beam experiments. These studies circumvented an inherent indeterminacy in the analysis of external-surface desorption and thereby allowed the Si-H surface bond energy to be quantified for the first time. The bond energy is 2.5 {plus minus} 0.2 eV for submonolayer coverages. 14 refs., 3 figs.

More Details

The use of scan paths in the debugging and testing of the EPSILON-2 research computer

Grafe, V.G.

Scan path testing and debugging offers a structured, proven way to debug and test arbitrarily complex electronic systems. The interface and equipment requirements are far lower than traditional debug and test techniques. The system is also completely testable even when physically remote from the lab where it was originally developed. This report describes our experience using scan techniques to debug the EPSILON-2 processor board, a system with over 300 ICs and over 2500 independently controllable and observable test points. The debug time of the circuit was greatly reduced by the adoption of scan path methodology. The use of expensive test equipment was drastically reduced, and the level of control of the circuitry increased. We have run tests on the processor from physically remote sites. Our experiences are described, and the adoption of scan path techniques is shown to be simple enough that it should be useful in all electronic projects. 8 refs., 12 figs.

More Details

Records management at the DOE national laboratories: Sandia National Laboratories

Searls, Nancy P.

Sandia National Laboratories is a large multi-program DOE laboratory. The Recorded Information Management Division (RIM) has an expanding mission to meet Sandia's needs for cost-effective management in information from creation to final disposition in accordance with applicable regulations and requirements. An analysis based on the need to meet requirements and to improve business practice was successful in convincing management to allocate increased resources to the RIM Compliance Project.

More Details

Microstructural characterization of solders and brazes for advanced packaging technology

Romig, Alton D.

Historically, the electronics industry has always attempted to increase the speed of electronic components and decrease the size of electronic assemblies by developing and manufacturing smaller and faster basic level components (e.g., integrated circuits). However, it is now becoming apparent that the next significant advancement in electronic assembly size and speed may come not as a result of smaller and faster devices, but rather as a consequence of smaller and more closely spaced packages. This increased packaging density will occur at early levels of assembly as industry moves towards multichip modules. It will also occur at later packaging steps as industry continues to expand the use of surface mount technology (SMT) and mixed mounting technology (through hole attachment as well as SMT on one circuit board). Furthermore, there will be an increased propensity to use higher packaging density on printed wiring boards (PWB) and to place more PWB's in a given volume at yet the next level of packaging. One class of materials on which this advanced packaging technology will place severe new demands will be the alloys used to join assemblies and subassemblies (e.g. solders and brazes). These materials will be taxed both from the perspective of enhanced manufacturability as well as greater in-service robustness. It is the objective of this paper, through the use of selected case studies, to illustrate how advanced microstructural characterization techniques can be used to improve packaging technology. The specific case studies discussed are: (1) Microstructural Characterization of Solders, (2) Microstructural Characterization of Solder Joint Embrittlement of Leaded, Surface Mount Transistors (3) Microstructural Characterization of Metal/Ceramic Brazes in Electronic Applications, and (4) Microstructural Characterization of Direct Brazing of Graphite to Copper. 25 refs., 16 figs.

More Details

The equivalence of simple models for radiation-induced impulse

Lawrence, R.J.

A number of models that predict the impulse generated in solid targets by short high-intensity radiation loads are described. It is shown that the impulse is insensitive to the details of the energy deposition and interaction processes. Thus with the proper nondimensionalization and normalization, all the models are known to be very nearly equivalent. 5 refs., 5 figs., 1 tab.

More Details

Use of silicon bipolar transistors as sensors for neutron energy spectra determinations

IEEE Transactions on Nuclear Science

Kelly, John E.

Recent reevaluation of the neutron displacement damage function for silicon qualifies it as a sensor for spectra determinations. This development is especially useful in the critical energy region from 0.2 to 2.0 MeV where, in the absence of fission foils, there is a shortage of response functions needed to define spectra satisfactorily. This paper describes how silicon bipolar devices can be used to improve neutron spectra determinations and therefore to better predict the displacement damage induced in devices. © 1991 IEEE

More Details

Experimental verification of bremsstrahlung production and dosimetry predictions for 15.5 MeV electrons

IEEE Transactions on Nuclear Science

Sanford, Thomas W.

The radiation produced by a 15.5-MeV monoenergetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the ±6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented. © 1991 IEEE

More Details
Results 95601–95650 of 96,771
Results 95601–95650 of 96,771