The US Department of Energy`s Office of Technology Development (OTD) has sponsored the development of the Generic Intelligent System Controller (GISC) for application to remote system control. Of primary interest to the OTD is the development of technologies which result in faster, safer, and cheaper cleanup of hazardous waste sites than possible using conventional approaches. The objective of the GISC development project is to support these goals by developing a modular robotics control approach which reduces the time and cost of development by allowing reuse of control system software and uses computer models to improve the safety of remote site cleanup while reducing the time and life cycle costs.
Stimulated reactions on Pt(111) surfaces containing coadsorbates have been probed using laser resonance-enhanced multiphoton ionization (REMPI) spectroscopy of the neutral products. In particular, the electron stimulated dissociation products of NO{sub 2}(a) coadsorbed with up to 0.75 ML of atomic O on Pt(111) has been studied. The coadsorbed O causes a large enhancement of the specific dissociation yield, a narrowing of the NO translational energy, a reduction of the NO internal energy, and the release of the O dissociation fragment into the gas phase. Reactive scattering between coadsorbates has also been studied. Specifically, NO{sub 2}(d) production has been observed during electron-beam irradiation of NO coadsorbed with O{sub 2} on Pt(1211). The NO{sub 2}(d) was indirectly observed as NO({upsilon}=5) and O({sup 3}P{sub J}) gas phase photodissociation fragments. We assign NO{sub 2} production to an electron-stimulated surface reaction involving a collision between energetic O atoms and adsorbed NO.
Heat-Pipe reflux receivers have been identified as a desirable interface to couple a Stirling engine with a parabolic dish solar concentrator. The reflux receiver provides power uniformly and nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. Therefore, the heat pipe reflux receiver allows the receiver and heater head to be independently thermally optimized, leading to high receiver thermal transport efficiency. Dynatherm Corporation designed and fabricated a screen-wick heat-pipe receiver for possible application to the Cummins Power Generation, Inc. first-generation 4 kW{sub e} free-piston dish-Stirling system, which required up to 30 kW{sub t}. The receiver features a composite absorber wick and a homogeneous sponge-wick on the aft dome to provide sodium to the absorber during hot restarts. The screen wick is attached to the absorber dome by spot welds. Refluxing troughs collect the condensate in a cylindrical condenser and return it directly to the absorber surface. The receiver was fabricated and lamp tested to 16 kW{sub t} throughput by Dynatherm. The receiver has been tested on Sandia`s 60 kW{sub t} solar furnace to a throughput power of 27.5 kW{sub t} and vapor space temperature up to 780{degrees}C. Infrared thermography was used to monitor the entire absorber dome for impending dryout while the receiver was tested. The receiver was started using solar input, without the assistance of electrical pre-heaters. The power was extracted with a gas-gap cold-water calorimeter to simulate the operation of a Stirling engine. The receiver design, thermal performance analysis, flux distribution analysis, test results, and post-test analysis are presented. 11 refs.
Nuclear thermal propulsion systems are envisioned as a fast and efficient form of transportation for the exploration of space. Several nuclear reactor concepts have been proposed. This document discusses SAFSIM (System Analysis Flow SIMulator) which is an engineering computer program that allows the fluid mechanic, heat transfer, and reactor dynamic simulation of the entire propulsion system. SAFSIM currently contains three basic physics modules: (1) fluid mechanics, (2) heat transfer, and (3) reactor dynamics. All three modules are coupled to allow the prediction of system performance. The analyst can employ any or all of the physics modules as the problem dictates.
A summary of the plans to test a prestressed concrete containment vessel (PCCV) model to failure is provided in this paper. The test will be conducted as a part of a joint research program between the Nuclear Power Engineering Corporation (NUPEC), the United States Nuclear Regulatory Commission (NRC), and Sandia National Laboratories (SNL). The containment model will be a scaled representation of a PCCV for a pressurized water reactor (PWR). During the test, the model will be slowly pressurized internally until failure of the containment pressure boundary occurs. The objectives of the test are to measure the failure pressure, to observe the mode of failure, and to record the containment structural response up to failure. Pre- and posttest analyses will be conducted to forecast and evaluate the test results. Based on these results, a validated method for evaluating the structural behavior of an actual PWR PCCV will be developed. The concepts to design the PCCV model are also described in the paper.
The transient transmission of laser activity cavity materials has been measured when they are subjected to 20 ms, fat, and nominal $3 nuclear radiation pulses from Sandia National Laboratories ACRR reactor. Infrasil and 7940 fused silica, and AR and high reflectance coatings have been transient tested at 1.06, 1.73, and 2.03 microns for gamma doses ranging from 0.3 to 0.65 Mrad and neutron fluences ranging from 4.0 to 1.5 10{sup 14} n/cm{sup 2}. pulse widths range from 12 to 250 ms. Transient absorption in 7940 silica and the AR coatings is less than the noise for the conditions of this experiment. At the wavelengths listed above the upper bound for the absorption coefficient of 17940 is 0.00158 cm{sup {minus}1} for single pulse operation. The reflectivity of the HR coating does not change when it is irradiated. Infrasil has both a transient and a permanent induced absorption when it is subjected to radiation. For single pulse operation the absorption coefficients at 1.06, 1.73, and 2.03 microns are 0.0115, 0.0026, and 0.0039 cm{sup {minus}1}, respectively.
The Naval Surface Weapons Laboratory has constructed a small electrical subsystem for the purpose of evaluating electrical upset from various electromagnetic sources. The subsystem consists of three boxes, two of which are intended to be illuminated by electromagnetic waves. The two illuminated boxes are connected by two unshielded cable bundles. The goal of the Navy test series is to expose the subsystem to electromagnetic illumination from several different types of excitation, document upset levels, and compare the results. Before its arrival at Sandia National Laboratories (SNL) the system was illuminated in a mode stirred chamber and in an anechoic chamber. This effort was a continuation of that test program. The Sandia tests involved the test methodology referred to as bulk current injection (BCI). Because this is a poorly-shielded, multiple-aperture system, the method was not expected to compare closely to the other test methods. The test results show that. The BCI test methodology is a useful test technique for a subset of limited aperture systems; the methodology will produce incorrect answers when used improperly on complex systems; the methodology can produce accurate answers on simple systems with a well-controlled electromagnetic topology. This is a preliminary study and the results should be interpreted carefully.
This report describes how small threaded fasteners should be used in threaded connections. Considerable test experience gives many insights into how small threaded fasteners should be used. The test evidence is summarized in this report. The test methods and procedures are described for tension tests to determine strength and ductility. Small threaded fasteners have been used successfully for many years in Sandia applications. Problems have been encountered in manufacturing parts using three fasteners. This report addresses these manufacturing problems and offers recommendations in five areas: (1) design and layout of threaded connections, (2) required depths for tapped holes, (3) characteristics of mating (clamped) surfaces, (4) tensile strength testing procedures and lengths of engagement needed to achieve the full tensile strength of these small fasteners, and (5) installation procedures. 15 refs.
This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.
Laser ablation studies of copper oxide using fiber optics to deliver the radiation have been made. A tapered fiber with a 600 micron input and a 200 micron output is used. For continuous operation the damage threshold at the input end is observed to be 2.5 mJ. The Dektak traces indicate the output beem is spatially uniform.
The purification of pyrite (FeS{sub 2}) used in Li-alloy/FeS{sub 2} thermal batteries by the physical process of flotation was evaluated for reduction of the quartz impurity. The process was compared to the standard process of leaching with concentrated hydrofluoric acid. Flotation was an attractive alternative because it avoided many of the safety and environmental concerns posed by the use of concentrated HF. The effects of particle size and initial purity of the pyrite feed material upon the final purity and yield of the product concentrate were examined for batch sizes from 3.5 kg to 921 kg. Feed materials as coarse as 8 mm and as fine as -325 mesh were treated; the coarse pyrite was ground wet in a rod mill or dry in a vibratory mill to -230 mesh prior to flotation. Both the HF-leached and the flotation-treated pyrite were leached with HCI (1:1 v/v) to remove acid-soluble impurities. The flotation-purified pyrite concentrates were formulated into catholytes; their electrochemical performance was evaluated in both single cells and 5-cell batteries for comparison to data generated under the same discharge conditions for catholytes formulated with HF/HCI-purified pyrite.
Diethyltoluenediamine (DETDA) (Ethyl Corp.`s Ethacure 100) was evaluated as a curing agent to replace methylenedianiline (MDA) (Shell`s Agent Z), which is a suspected carcinogen. Shell Z and Ethacure 100 are used to cure Epon 828 epoxy resin for encapsulation of headers for thermal batteries at Sandia. The physical properties of the alumina-filled epoxies cured with Shell Z and Ethacure 100 were characterized to determine if the material strengths were comparable. The study also included epoxies that were aged at 130{degrees}C for one month, to simulate storage at 40{degrees}C for 25 years. Properties that were measured included tensile strength, elastic modulus, shear strength, butt tensile strength, and elongation. The. specific heats of the alumina-filled epoxies were measured for use in thermal-modeling programs for thermal batteries. Batteries built with the Ethacure 100-cured epoxy encapsulation were aged for up to one year at 74{degrees}C and were subjected to severe (1,800 g/50 ms) lateral shock to test the adhesion to the stainless steel header.
Preliminary experiments on the transmission properties of optical fibers exposed to nuclear radiations has been performed. Three wavelengths, 400, 1730 and 2030 nm, were observed for silica fibers. The long term goal of this effort is to develop a method using fiber optics to determine transmission and reflection properties of laser cavity components while being exposed to nuclear radiations. 5 refs.
The aqueous concentration of a radionuclide is one factor that determines the rate at which the radionuclide might be transported away from a nuclear waste repository should a repository breach occur. This study documents research examining the solubility of plutonium in a brine composition of interest for performance assessment for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. Solutions starting with five different forms of plutonium, Pu(III), Pu(IV), Pu(IV)-polymer, Pu(V), and Pu(VI), were allowed to equilibrate in a brine with composition similar to that measured from the Culebra Member of the Rustler Formation in the Air Intake Shaft to the WIPP. Nearsteady-state conditions were reached within a year of reaction time. The resulting concentrations represent an upper bound on the amount of plutonium that can remain dissolved in solution under the experimental conditions (e.g., exclusive of colloids) and can thus be transported with the aqueous phase.
The Integral Effects Test (IET) series was designed to investigate the effects of subcompartment structures on direct containment heating (DCH). Scale models of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modelled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limiter plate with a 4 cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by tube ejection in a high pressure melt ejection (HPME) accident. The reactor cavity model contained an amount of water (3.48 kg) that was scaled to condensate levels in the Zion plant. Iron oxide, aluminum, chromium thermite (43 kg) was used to simulate molten corium. The driving gas was 440 g{center_dot}moles of steam at an initial absolute pressure of 7.1 MPa in IET-1 and 477 g{center_dot}moles of steam at an initial pressure of 6.3 MPa in IET-1R. Steam blowdown entrained debris into the Sorts vessel resulting in a peak pressure increase in Sorts of 98 kPa in IET-1 and 110 kPa in IET-1R. The total debris mass ejected into the Sorts vessel was 43.0 kg in IET-1, compared to 36.2 kg in IET-1R. The Sorts vessel had been previously inerted with N{sub 2}. The total quantity of hydrogen produced by steam/metal reactions was 223 g{center_dot}moles in IET-1 and 252 g{center_dot}moles in IET-1R.
The purpose of this study is to investigate transient pressure loads form hydrogen combustion. Specifically, this study relates pressure loads to variations in mixture and initial conditions, mixture heterogeneities, ignition location, and variations in geometry. This study has shown that initial conditions and variations in mixture have a large effect upon the adiabatic isochoric complete combustion, detonation, and reflected detonation pressures. An inert gas layer between a detonable gas mixture and surface can give rise to reflected pressures higher than in the homogeneous case. A deflagration-to-detonation transition (DDT) event near a surface gives rise to higher reflected pressures, and lower impulses, than if the DDT occurred far from the surface. Edges and corners focus detonation waves, which increases both pressures and impulses over those seen from a normally reflected detonation. The loads at points behind an obstacle is less than the load that would be seen if the obstacle were not there.
The Transportation Systems Center at Sandia Laboratory performs research, development, and implementation of technologies that enhance the safe movement of people, goods, and information. Our focus is on systems engineering. However, we realize that to understand the puzzle, you must also understand the pieces. This brochure describes some of the activities currently underway at the Center and presents the breadth and depth of our capabilities. Please contact the noted, individuals for more, information.
The mission of our Center is to enhance the security, prosperity and well-being of our citizens by the application of a security systems approach incorporating the concepts of protection-in-depth, balance, and cost-effective protection. We will build upon the expertise gained through decades of providing security for the DOE nuclear weapons complex and DoD nuclear weapons storage facilities and solve security problems of national importance. Our mission will be accomplished while: Enhancing our ability to fulfill our role as the lead DOE Laboratory in physical security R&D; enhancing our ability to fulfill our role in nuclear weapons surety; enhancing our ability to respond to security requests from other federal, state,, and local agencies; and providing taxpayers a substantial return on investment, both directly in cost savings and indirectly in leveraged benefits. A brief description of research on security systems is described.
The 34-meter Test Bed is a research-oriented, variable-speed vertical-axis wind turbine located at the USDA Agricultural Research Station in Bushland, Texas. Sandia National Laboratories designed and built this machine to perform research in structural dynamics, aerodynamics, and fatigue. Testing to determine its performance in various wind conditions and rotation rates has been ongoing for over three years. This report documents a broad range of test data and includes comparisons to analytical results.
Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed.
This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulative distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.
Accurate alignment and focus of mirror facets are critical for the integration of concentrators and receivers in many of the low-cost stretched-membrane concentrators currently under development. In this report, the theoretical development of computer software that traces light rays from a source to a facet of a point-focusing solar concentrator and then to a target is given. Examples of approaches for the alignment of faceted point-focusing solar concentrators, which make use of targets generated by this computer program, are also presented.
This review of ongoing research at Sandia National Laboratory in the areas of nuclear weapons development and testing, arms control. As a multiprogram laboratory, their core competencies make special contributions in other areas of national importance. Work on US DOE programs is presented on the following subjects: robots; computers: arms control; nuclear weapons reliability; fusion research; solar energy; semiconductor detectors; radioactive waste management; nuclear explosion detection; and others. The laboratories strategic plan and other management methods are outlined. (GHH)
The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.
This report describes a hardware implementation of a fast fourier transform (FFT) based real time data compression system. The system is currently configured to compress and analyze airborne vehicle vibration data but it can be utilized for compressing any one- dimensional data stream. The algorithm uses a two-stage process to compress successive stationary time periods of input data. The first stage compresses data by transforming continuous blocks of 2048 points to the frequency domain using Welch's method. The second stage provides further compression by logarithmically averaging adjacent frequency bins of the transformed signal. These compression techniques result in a bandwidth savings from 8:1 to 64:1 per channel compared to strictly analog or digital transmission techniques. The complete technique as well as the hardware used to implement it is described in detail in this report.
We have developed a controlled environment system in which to perform wetting experiments to analyze the effects of various atmospheres, both inert and reducing, on solder processing. This system consists of a custom designed vacuum chamber, an apparatus for heating specimens and a video system for data acquisition. The system design allows for rapid changes to various processing atmospheres. Specimens can be heated to soldering temperature from room temperature rapidly. The temperature is regulated by a controller which gives a maximum heating rate of 23{degrees}C/second while minimizing the amount of overshoot, thereby quickly a stabilized temperature. A video system is used to acquire the data in the form of both numerical data and real-time video images. The video system allows multiple views of the wetting process to be captured and simultaneously records time and temperature information. The recorded information is suitable for digital analysis. The controlled atmosphere soldering system has been used to perform experiments that examine the effect of inert and acid vapor atmospheres on solder wetting behavior.
Measurements have recently been conducted and computer models constructed to determine the coupling of lightning energy into munition storage bunkers as detailed in companion conference papers. In this paper transfer functions from the incident current to the measured parameters are used to construct simple circuit models that explain much of the important observed quantitative and qualitative information and differences in transfer functions are used to identify nonlinearities in the response data. In particular, V{sub oc} -- the open-circuit voltage generated between metal objects in the structure, I{sub sc} -- the short-circuit current generated in a wire connecting metal objects in the structure, and a typical current measurement in the buried counterpoise system behave in a relatively simple manner explainable by one or several circuit elements. The circuit elements inferred from measured data are comparable in magnitude with those developed from simple analytical models for inductance and resistance. These analytical models are more useful in predicting bounding electromagnetic environment values rather than providing exact time domain waveforms. 2 refs.
As a multiprogram engineering laboratory, Sandia National Laboratories (SNL) has major research and development responsibilities for nuclear weapons, arms control, energy, environment, and other areas of strategic importance to national security. To accomplish this diversified mission, analysts within the Engineering Sciences Directorate support the entire laboratory using finite element and finite difference solution schemes to solve problems in fluid dynamics (steady state and transient, compressible and incompressible), thermodynamics (heat transfer), hydrodynamics (impact physics, penetration mechanics), solid mechanics (structural/thermal analysis, fracture mechanics, ground subsidence, impact modeling) and structural dynamics. To assist these analysts in performing these analyses most efficiently, the Applied Visualization Group was formed and tasked to develop a ``production scientific visualization environment.`` In this paper, we characterize a visualization environment that has been designed and prototyped for a large community of scientists and engineers. The proposed environment makes use of a visualization server concept to provide effective, interactive visualization to the user`s desktop. Benefits of using the visualization server approach are discussed. Some thoughts regarding desirable features for visualization server hardware architectures are also addressed. A brief discussion of the software environment is included. The paper concludes by summarizing certain observations which we have made regarding the implementation of such visualization environments.
Aryl-, ethynyl- and alkyl-bridged polysilsesquioxanes were prepared by the hydrolysis and condensation of the respective bridged triethoxysilanes under both acidic and basic conditions. Gelation of the resulting sols can take place at concentrations as low as 0.02 M in tetrahydrofuran. The gels can be air dried to afford xerogels or extracted with supercritical carbon dioxide to give high surface area aerogels. The materials were characterized by solid state {sup 13}C and {sup 29}Si CP MAS NMR spectroscopies, gas sorption porosimetry, and thermal gravimetric analysis. The bridged polysilsesquioxanes offer the opportunity to prepare hybrid organic-inorganic materials with properties unique from other siloxane network materials and silica gels.
This paper describes current research and development on miniaturized sensing systems for use during in situ characterization of nuclear waste storage tanks, buried waste sites, and decommissioned production facilities. Each miniaturized sensor system will consist of a suite of chemical, radiological, and physical properties sensors integrated into a compact package which will be mounted on the end of a robotic arm and/or vehicle. While the specific size of this remote sensor head and the types of sensors included will depend on site needs, the supporting generic computing system may be used for other waste characterization applications. This computing system will contain all necessary hardware and software to acquire, combine, interpret, display, and archive a wide range of sensor data. This paper describes the present status of the project, the lessons learned from the first prototype, and planned future designs of the next generation system. 7 refs.
One of the principal objectives of the International Technology Exchange Program (ITEP) is the exchange of waste management and environmental restoration (WM/ER) technologies between the US and other nations. The current emphasis of ITEP is the transfer of technologies to the US that could provide better, faster, cheaper, or safer solutions to the needs of the DOE complex. The 10 candidate technologies that have been identified thus far by ITEP are discussed. The highlights of preliminary evaluations of these technologies through a systems approach are also described. The technologies have been evaluated by a screening process to determine their applicability to the leading WM/ER needs of the DOE complex. The technologies have been qualitatively compared with the known or anticipated capabilities of domestic, base case technologies.
During inspections of the Waste Isolation Pilot Plant Waste Shaft in May 1990, patchy areas of apparently degraded concrete were observed on the inner surface of the shaft liner between approximately 810 feet and 900 feet below the surface. The apparent cause of this degradation is chemical reaction of the concrete with magnesium-bearing brine in the annulus between the concrete liner and the host rock. The greater thickness of the degraded layer below the joint may be related to the different chemical compositions that were determined by analyses of the paste portions of concrete samples from above and below the joint. The analytical results support a complex mechanistic explanation of concrete degradation observed behind the liner and in the joint: chemical weakening of the concrete paste; cracking by precipitation of solids in pores; and increased permeability due to calcium chloroaluminate formation. Additional sampling, analyses, and regular monitoring are worth considering to bound the vertical extent of Waste Shaft liner degradation, detect concrete liner degradation in other shafts, and measure any ongoing degradation that may be occurring.
This paper presents recent progress in using finite-difference analysis codes to simulate the responses of complex structures due to direct lightning. Significant advances have been made in interfacing a finite-difference code with commercial computer aided design tools, in suppressing a pervasive instability associated with the thin-wire algorithm for modeling conductors much smaller than a cell size, and in visualizing the results with color movies. Preliminary comparisons between the results of the finite-difference code and the results obtained during a recent rocket-triggered lightning test are also presented. 3 refs.
Computer modeling of the blasting process can aid in gaining an understanding of the physics controlling the process. The sequence of events in a blast occur so rapidly and in such a violent environment that measurements are still difficult to obtain. Computer modeling using a program such as DMC [Taylor and Preece, 1989a, 1989b] can provide insights into the physics of the rapid and violent events associated with a blast. DMC has been used to simulate crater blasting [Preece, 1990c] and the blasting of Oil Shale for modified in-situ retorting [Preece, 1990a, 1990b]. This paper will address the influence that damping has on the velocity distribution in the rock mass during the rock motion phase of a blast. Since velocity distribution is a controlling factor of muck pile shape, damping also contributes to muck pile shape.
The most recent RADLAC experiments studied propagation and hose stability of a high current beam propagating in the atmosphere, and confirmed the convective nature of the hose instability. The unique combination of high beam current and extremely small initial perturbation, allowed saturation of the hose instability to be observed for the first time. Data on high current propagation was needed because the current scaling is more complex than energy scaling. It was important to collect data at atmospheric pressure to insure that subtle air chemistry effects such as avalanche did not distort the experiment. With this philosophy, the results should be directly scaleable to applications at higher energy.
The possibility of long-term smoke emissions (from 1 to 3 years) from burning Kuwaiti oil wells has increased concerns regarding personnel exposure and acute and chronic health effects. This document, which is the result of work done in the spring of 1991, addresses those concerns. Part 1 of this document describes follow-on efforts to the pre-war modeling studies of the toxicological hazards to exposed Kuwaiti populations. Part 2 describes a pollutant monitoring program that could be carried out in the summer of 1991 to measure real-time exposure levels and to obtain more detailed information about the pollutant source terms and meteorological conditions that are necessary inputs to model computations.
This project was a collaboration between Sandia National Laboratories and the Harvey E. Yates Company (Heyco), Roswell, NM, conducted under the auspices of Department of Energy`s Oil Recovery Technology Partnership. The project applied Sandia perspectives on the effects of natural fractures, stress, and sedimentology for the stimulation and production of low permeability gas reservoirs to low permeability oil reservoirs, such as those typified by the Bone Spring sandstones of the Delaware Basin, southeast New Mexico. This report details the results and analyses obtained in 1990 from core, logs, stress, and other data taken from three additional development wells. An overall summary gives results from all five wells studied in this project in 1989--1990. Most of the results presented are believed to be new information for the Bone Spring sandstones.
Waveguide-to-microstrip transitions are extremely important components of mm-wave communication systems because it is the interface between the signal processing circuitry and the transmitted/received signal. This report describes the design procedure, construction detail, and measurement of both 3 and 4 step stepped ridge waveguide (RWG) transitions. Both transitions had > 10 dB return loss over the frequency band of interest (57--63 GHz) while insertion loss was less than 1 dB. Also, the transition lengths were at least half as long as traditional finline transitions while having superior performance. These shorter lengths were achieved by violating the ``small-step`` assumption usually used in RWG transition design. 7 refs.
The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.
This paper discusses the imaging radar technology requirements for the Open Skies regime including the unresolved issues to be discussed at future Open Skies Consultative Commission (OSCC) meetings. Compliance with international rules on shared technology is addressed and some of the practical considerations for operational deployment of the radar imaging equipment in an Open Skies aircraft are presented. The Open Skies Treaty requirements and validation methodologies for imaging radars that have been agreed on and those that will require future OSCC review are discussed.
Supercritical fluid technology has been used in industry for the extraction and separation of materials in a number of applications such as food preparation and petroleum processing. Gel-derived microcellular polymer foam technology, developed at Sandia, requires the extraction of organic solvents from thermally-induced phase separated gels to yield microcellular foams. We have applied supercritical fluid extraction technology to these specialized materials by using supercritical carbon dioxide to extract a variety of organic solvents from gels to produce foams. Our supercritical extraction process will be described, as well as high pressure equipment that is used to perform the extractions. The results of gel extraction trails and qualitative supercritical carbon dioxide/solvent miscibility experiments will also be presented. We plan to pursue other related areas in this field, including supercritical fluid cleaning, quantitative solubility studies, and supercritical fluid chromatography.
This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.
Many problems in computer applications can in theory be solved by searching through a directed-acyclic graph (DAG). In practice, however, this approach has been hampered by our analytical inability to predict the search cost accurately without actually implementing and executing the program. To overcome this inability, a simple and quick heuristic procedure based on a stratified sampling approach is presented. In generalizes a tree sampling technique already shown to be useful in predicting the performance of tree-searching programs. With the addition of this DAG sampling procedure, we should be able to forecast the complexity and feasibility of alternative tree or DAG searching algorithms so that we may utilize our computational resources more effectively.
The purpose of this document is to present and detail the deliverables for the Tiger Team Action Plan, Finding MF-11, and milestones in the FY92 Performance Appraisal for Conduct of Operations from Sandia National Laboratories to DOE. The ``Proposal for Reporting Conduct of Operations & Quality Assurance Compliance to DOE`` describes what the deliverables shall be. Five major steps that result in the development of line practices are covered in this document. These line practices specify what Sandia will do to comply with the above DOE management orders. The five steps include: hazard classification; programmatic risk classification; management grouping; compliance plan; and corporate reporting.
An automatic attenuation/phase calibration system which simultaneously certifies attenuation and transmission angle through up to 100 dB of loss has been developed at Sandia National Laboratories. System hardware is commercially available while the software and the certification techniques constitute the development effort. The system is computer controlled and intended primarily for standards type measurements. 14 refs.
Sandia has developed a third-generation set of specifications for performance and reliability testing of photovoltaic concentrator modules. Several new requirements have been defined. The primary purpose of the tests is to screen new concentrator designs and new production runs for susceptibility to known failure mechanisms. Ultraviolet radiation testing of materials precedes receiver section and module performance and environmental tests. The specifications include the purpose, procedure, and requirements for each test. Recommendations for future improvements are presented.
A number of correlations describing the advent of gas blowthrough and the subsequent exit quality were collected and examined. A simple scaling analysis was applied to these correlations to identify important nondimensional groups, and the range of values for these dimensionless groups at nuclear power plant (NPP) and experimental scales were used to examine the applicability of the correlations at different scales. The performance of each of the correlations was also assessed over a typical parameter range for NPP and experimental conditions. The Gluck correlations for the onset of gas blowthrough is recommended for high pressure melt ejection analyses. AL new model is developed for predicting the two-phase flow quality following the onset of gas blowthrough. Uncertainty estimates for the blowthrough correlation and the flow quality correlation are quantified.
Kennedy, R.P.; Von Riesemann, W.A.; Wyllie Jr., L.A.; Schiff, A.J.; Ibanez, P.
In December 1980, the US Nuclear Regulatory Commission (NRC) designated ``Seismic Qualification of Equipment in Operating Plants`` as an Unresolved Safety Issue (USI), A-46. The objective of USI A-46 is to develop alternative seismic qualification methods and acceptance criteria that can be used to assess the capability of mechanical and electrical equipment in operating nuclear power plants to perform the intended safety functions. A group of affected utilities formed the Seismic Qualification Utility Group (SQUG) to work with the NRC in developing a program methodology to enable resolution of the A-46 issue. To assist in developing a program methodology, SQUG and the NRC jointly selected and supported a five-member Senior Seismic Review and Advisory Panel (SSRAP) in June 1983 to make an independent assessment of whether certain classes of equipment in operating nuclear power plants in the United States have demonstrated sufficient ruggedness in past earthquakes so as to render an explicit seismic qualification unnecessary. SSRAP operated as an independent review body with all of its findings submitted concurrently to both SQUG and the NRC. During their period of involvement, SSRAP issued several draft reports on their conclusions. This document contains the final versions of these reports; namely, ``Use of Seismic Experience and Test Data to Show Ruggedness of Equipment in Nuclear Power Plants,`` dated February 1991 and ``Review Procedure to Assess Seismic Ruggedness of Cantilever Bracket Cable Tray Supports,`` dated March 1, 1991.
JNMM, Journal of the Institute of Nuclear Materials Management
Ewing, Ronald I.
Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. Measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading. The 'Fork' measurement system, designed at Los Alamos National Laboratory and used by the International Atomic Energy Agency to verify burnup and age in international safeguards applications, is being investigated for this application.
This paper presents a theoretical model to predict the curvature of a rectangular gel which is subjected to a pH gradient. The curvature is formulated as a function of volumetric strains. Experimental observations indicate a direct coupling between the electric field and the gel that induces an immediate volume collapse independent of pH gradients. Additional deformations occur later due to a pH gradient evolving through hydrolysis.