Publications

Results 94601–94650 of 96,771

Search results

Jump to search filters

Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

Alsbrooks, T.H.

Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

More Details

CRESLAF (Version 4.0): A Fortran program for modeling laminar, chemically reacting, boundary-layer flow in cylindrical or planar channels

Coltrin, Michael E.

CRESLAF is a Fortran program that predicts the velocity, temperature, and species profiles in two-dimensional (planar or axisymmetric) channels. The program accounts for finite-rate gas-phase and surface chemical kinetics and molecular transport. The model employs the boundary-layer approximations for the fluid-flow equations, coupled to gas-phase and surface species continuity equations. The program runs in conjunction with the Chemkin preprocessors for the gas-phase and surface chemical reaction mechanisms and the transport properties. This report presents the equations defining the model, the method of solution, the input parameters to the program, and a sample problem illustrating its use. Applications of CRESLAF include chemical vapor deposition (CVD) reactors, heterogeneous catalysis on reactor walls, and corrosion processes.

More Details

Promising developments and biometric testing

Holmes, J.P.

Biometric identity research and development activities are being conducted in universities, government, and private industry. This paper discusses some of the factors that limit the performance of biometric identity devices, looks at some new developments, and speculates on future developments.

More Details

Using a private SMDS/ATM network to provide long-haul supercomputing visualization services

Naegle, J.H.; Testi, N.; Pavlakos, C.; Chen, H.

Sandia National Laboratories is prototyping a service for providing a distributed visualization capability between its Albuquerque, New Mexico and Livermore, California sites. The service will allow TCP/EP LAN users to process computationally intensive codes on the Cray Y-MP 8/864 and use the Application Visualization System, (AVS) running on a visualization server to display the results to desktops in Livermore (or Albuquerque). The long-haul environment presents several technical challenges such as high delays (up to 42 milliseconds), potential error rates, and security concerns which can affect the quality of the services. The network design requires low latency switch gear and high speed LAN connections (FDDI) to make the visualization/computational services useful to the customer. This paper will describe tie network design used and will report performance characteristics of the applications utilizing this service.

More Details

Characterization of a scannerless LADAR system

Garcia, P.; Anthes, J.; Pierce, J.T.; Dressendorfer, P.; Evans, I.K.; Bradley, B.D.; Sackos, J.T.; Lecavalier, M.M.

Performance projections based on the analytical model of a scannerless laser radar system are compared to laboratory simulations and to field data measurements. Data and characteristics of the system, including camera response, image spatial resolution, and contributions to the signal-to-noise ratio are presented. A discussion of range resolution for this system will also be presented, and finally, the performance characteristics of the prototype benchtop system will be summarized.

More Details

Guide to resources for EPA regulations

Hospelhorn, M.B.

In an effort to remain regulatory compliant, it is becoming increasingly important to locate resources that can provide up to date environmental regulations and regulatory interpretations. there are many resources available to provide information and training in these areas.

More Details

Adding intelligence to conventional industrial robots

Harrigan, Raymond W.

Remote systems are needed to accomplish many tasks such as the clean up of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. In addition, hazardous operations which in the past have been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. Traditional remote operations have, unfortunately, proven to also have very low productivity when compare with unencumbered human operators. However, recent advances in the integration of sensors and computing into the control of conventional remotely operated industrial equipment has shown great promise for providing systems capable of solving difficult problems.

More Details

Preparation of carbon monoliths having tailored pore structure from porous polymer precursors

Lagasse, Robert R.

This work concerns preparing tailored porous carbon monoliths by pyrolyzing porous polymer precursors. Prior work in this laboratory (1) demonstrated that a low density (0.05 g/cm{sup 3}), high void fraction (97 vol%) carbon monolith could be prepared by pyrolyzing a porous poly(acrylonitrile) (PAN) precursor. A higher density, more robust carbon material is preferred for certain applications, such as electrodes for electrochemical devices. The present work demonstrates that porous carbon monoliths having mass density of 0.7 g/cm{sup 3} can be prepared from a porous PAN precursor if the pyrolysis is controlled carefully. The macropore structure of the carbon is adjusted by changing the pore structure of the PAN precursor, and the finer scale structure (such as the crystallite size L{sub c}) is adjusted by varying the pyrolysis or heat treatment temperature.

More Details

A critical assessment of the Arrhenius oven-aging methodology

Gillen, Kenneth T.

The Arrhenius approach assumes a linear relation between log time to material property change and inverse absolute temperature. For elastomers, ultimate tensile elongation results are often used to confirm Arrhenius behavior, even though the ultimate tensile strength is non-Arrhenius. This paper critically examines the Arrhenius approach. Elongation vs air-oven aging temperature for a nitrile rubber, gives an E{sub a} of 22 kcal/mol; however this does not hold for the tensile strength, indicating degradation. Modulus profiling shows heterogeneity at the earliest times at 125 C, caused by diffusion-limited oxidation (DLO). Tensile strength depends on the force at break integrated over the cross section, and nitrile rubbers aged at different temperatures experience different degrees of degradation in the interior. Modulus at the surface, however, is not affected by DLO anomalies. Severe mechanical degradation will occur when the edge modulus increases by an order of magnitude. 7 figs, 3 refs.

More Details

Waste minimization/pollution prevention at R&D facilities: A cradle-to-grave tracking and information system for Sandia National Laboratories

Gillenwater, M.W.

Critical information required for Environment, Safety, and Health (ES&H) protection can be acquired with a comprehensive cradle-to-grave tracking and information system. The cradle-to-grave concept makes two initial assumptions. First, it is more effective to gather information at the origination of a process or entry point of a material and maintain that information during the rest of its life-cycle than to collect data on an ad hoc basis. Second, the information needs of the various ES&H programs have many commonalties. A system which adheres to a methodology based upon these assumptions requires a significant technical and administrative commitment; however, this investment, will in the long-term, reduce the effort and duplication of ES&H programs, improve the efficiency of ES&H and line personnel, and increase the scope and accuracy of ES&H data. The cradle-to-grave system being developed at Sandia National Laboratories (SNL) is designed to provide useful information on materials, personnel, facilities, hazards, wastes, and processes to fulfill the mission of pollution prevention, risk management, industrial hygiene, emergency preparedness, air/water quality, and hazardous and radioactive waste management groups. SNL is currently linking system modules, which are at various stages of development and production, to realize a cradle-to-grave tracking and information system that is functional for a large research and development laboratory.

More Details

Object oriented simulation implementation in support of robust system design

Senglaub, Michael E.

A very brief description of two ``classes`` developed for use in design optimization and sensitivity analyses are given. These classes are used in simulations of systems in early design phases as well as system response assessments. The instanciated classes were coupled to system models to demonstrate the practically and efficiency of using these objects in complex robust design processes.

More Details

Calibration of the BKW--EOS and application to aluminized composite explosives

Hobbs, Michael L.

The Becker-Kistiakowsky-Wilson equation of state (BKW-EOS) has been calibrated over a wide initial density range near C-J states using measured detonation properties from 62 explosives at III total initial densities. Values for the empirical BKW constants {alpha}, {beta}, {kappa}, and {theta} were 0.5, 0.298, 10.5, and 6620, respectively. Covolumes were assumed to be invariant. Model evaluation includes comparison to measurements from 91 explosives composed of combinations of Al, B, Ba, C, Ca, Cl, F, H, N, 0, P, Pb, and Si at 147 total initial densities. Adequate agreement between predictions and measurements were obtained with a few exceptions for nonideal explosives. However, detonation properties for the nonideal explosives can be predicted adequately by assuming partial equilibrium. The partial equilibrium assumption was applied to aluminized composites of RDX, HMX, TNETB, and TNT to predict detonation velocity and temperature.

More Details

Application of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

Bartel, Lewis C.

The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignored. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill.

More Details

Integration of rapid prototyping into design and manufacturing

Atwood, Clinton L.

The introduction of rapid prototyping machines into the market place promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs improve efficiency, and increase flexibility without sacrificing quality. Sandia Utilizes stereolithography and selective laser sintering capabilities to support internal design and manufacturing efforts. Stereolithography (SLA) is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit check models, visual aids for manufacturing, and functional parts in assemblies. Selective laser sintering (SLS) is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SLA and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the stereolithography and selective laser sintering rapid prototyping machines.

More Details

Effects of cavern spacing on the performance and stability of gas-filled storage caverns

Hoffman, Edward L.

Three-dimensional finite element analyses of gas-filled storage caverns in domal salt were performed to investigate the effects of cavern spacing on surface subsidence, storage loss, and cavern stability. The finite element model used for this study models a seven cavern storage field with one center cavern and six hexagonally spaced surrounding caverns. Cavern spacing is described in terms of the P/D ratio which is the pillar thickness (the width between two caverns) divided by the cavern diameter. With the stratigraphy and cavern size held constant, simulations were performed for P/D ratios of 6.0, 3.0, 2.0, 1.0, and 0.5. Ten year simulations were performed modeling a constant 400 psi gas pressure applied to the cavern lining. The calculations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. For the range of P/D ratios studied, cavern deformation and storage volume were relatively insensitive to P/D ratio, while subsidence volume increased with increasing P/D ratio. A stability criterion which describes stability in terms of a limiting creep strain was used to investigate cavern stability. The stability criterion indicated that through-pillar instability was possible for the cases of P/D = 0.5 and 1.0.

More Details

The Authenticated Tracking and Monitoring System (ATMS) concept

Schoeneman, J.L.

One of the proposed applications of the satellite-based Global Verification and Location System (GVLS) is the Authenticated Tracking and Monitoring System (ATMS). When fully developed, ATMS will provide the capability to monitor, in a secure and authenticated fashion, the status and global tracking of selected items while in transit - in particular, proliferation sensitive items. The resulting tracking, timing, and status information can then be processed and utilized to assure compliance with, for example, various treaties. Selected items to be monitored could include, but are not limited to, Treaty Limited Items (TLIs), such as nuclear weapon components, Re-entry Vehicles (RVs), weapon delivery and launch systems, chemical and biological agents, Special Nuclear Material (SNM), and related nuclear weapons manufacturing equipment. The ATMS has potential applications in the areas of arms control, disarmament and Non-proliferation treaty verification, military asset control, as well as International Atomic Energy Agency (IAEA) and Euratom safeguards monitoring activities. The concept presented here is mainly focused on a monitoring technology for proliferation sensitive items. It should, however, be noted that the systems potential applications are numerous and broad in scope, and could easily be applied to other types of monitoring activities as well.

More Details

Testing technology: A Sandia technology bulletin

Goetsch, Robert S.

This bulletin presents state of the art testing technology utilized at Sandia National Laboratory. A hand-held NiCad battery tester automatically checks batteries of individual cells. Modal analysis shows the way to better process control for integrated circuit lithography. An ultrasonic system pings reentry vehicles to measure in-flight ablation. A smaller VISAR shines in detonator tests. Higher image quality is achieved at neutron radiography facility with the use of a neutron collimator.

More Details

Making the connection between information modeling and implementation

Eaton, M.J.

Over the past several years the Information Technology Department at Sandia Laboratories has developed information systems based on a solid foundation of information modeling and data administration. The output of the information modeling efforts is a fifth normal form relational table structure and associated data constraints. Developers would then implement the system by creating end-user application software. Traditionally, the development process combined the code necessary for maintaining data constraints with the code to provide the user interface (i.e. forms, windows, etc.). This approach has an adverse effect on the maintainability of the software as the system (i.e. the information model) changes over time. This paper will discuss the application of a direct connection between the information model and the implementation of a database with associated code to maintain required data constraints. The automated generation of this code allows the developers to concentrate on the user interface code development. The technique involves generating database procedure code automatically from the information modeling process. The database procedure code will enforce the data constraints defined in the information model. This has resulted in a fully functional database with complete rules enforcement within days of a completed information model. This work used the Knowledge Management Extensions of the Ingres database software. Changes to the architecture of both Application By Forms (ABF) and Ingres Windows4GL client applications required by this process will also be discussed.

More Details

Manufacturing technology: A Sandia technology bulletin

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

This bulletin describes innovative manufacturing technologies being developed at Sandia National Laboratories. Topics in this issue include: new techniques to overcome barriers to large scale fabrication of vertical cavity surface-emitting lasers (VCSELs), variability reduction in plasma etching of microcircuits, using neural networks to evaluate effectiveness of flux-cleaning methods and alternative fluxes for printed circuit boards, ion implantation to increase the strength and wear resistance of aluminium, and a collaborative project to improve processing of thin-section welded assemblies. (GH)

More Details

Locally non-uniform finite-difference time domain with application to stealth, crosstalk, and narrow apertures

Riley, Douglas J.

A technique to integrate a dense, locally non-uniform mesh into finite-difference time-domain (FDTD) codes is presented. The method is designed for the full-wave analysis of multi-material layers that are physically thin, but perhaps electrically thick. Such layers are often used for the purpose of suppressing electromagnetic reflections from conducting surfaces. Throughout the non-uniform local mesh, average values for the conductivity and permittivity are used, where as variations in permeability are accommodated by splitting H-field line integrals and enforcing continuity of the normal B field. A unique interpolation scheme provides accuracy and late-time stability for mesh discontinuities as large as 1000 to 1. Application is made to resistive sheets, the absorbing Salisbury screen, crosstalk on printed circuit boards, and apertures that are narrow both in width and depth with regard to a uniform cell. Where appropriate, comparisons are made with the MoM code CARLOS and transmission-line theory. The hybrid mesh formulation has been highly optimized for both vector and parallel-processing on Cray YMP architectures.

More Details

Experimental aerodynamics research on a hypersonic vehicle

Oberkampf, William L.

Aerodynamic force and moment measurements and flow visualization results are presented for a hypersonic vehicle configuration at Mach 8. The basic vehicle configuration is a spherically blunted 10{degree} half-angle cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap could be attached so that deflection angles of 10{degree}, 20{degree} and 30{degree} could be obtained. All of the experimental results were obtained in the Sandia Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. Flow visualization results include shear stress sensitive liquid crystal photographs, surface streak flow photographs (using liquid crystals), and spark schlieren photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. The surface flow photo-graphs show attached and separated flow on both the leeside of the vehicle and near the flap. A detailed uncertainty analysis was conducted to estimate the contributors to body force and moment measurement uncertainty. Comparisons are made with computational results to evaluate both the experimental and numerical results. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of relevant computational aerodynamics codes.

More Details

Analysis of high contact resistances associated with hermetic and lightning arrestor connectors

Craig, Marcus J.

Contact resistances of greater than 40 milliohms have been associated with hermetic connectors and lightning arrestor connectors (LAC) during routine testing. Empirical analysis demonstrated that the platings could be damaged within several mating cycles. The oxides that formed upon the exposed copper alloy had no significant impact upon contact resistance when the mated contacts were stationary, but effectively disrupted continuity when the mating interfaces were translated. The stiffness of the pin contact was determined to be about five times greater than the socket contact. As the pin contact engages the socket, therefore, the socket spring member deflects and the pin does not deflect. Hence, the pin contact could easily remain centered within the socket cavity in a mated condition, contacting the hemispherical spring at a localized point. Thus the only avenue for electrical conduction is between two contacting curved surfaces-the pin surface and the socket contact dimple surface. This scenario, coupled with the presence of corrosion products at the contacting interface, presents the opportunity for high contact resistances.

More Details

Early results on the environmental integrity of W-88 o-ring seals

Gillen, Kenneth T.

The author reports experimental measurements for the argon and oxygen permeability coefficients for the new EPDM material (SR793B-80) used for the environmental o-ring seals of the W88. The results allow the author to refine the argon gas analysis modeling predictions for W88 surveillance units. By comparing early surveillance results (up to four years in the field) with the modeling, the author shows that (1) up to this point in time, leakage past the seals is insignificant and (2) the argon approach should be able to inexpensively and easily monitor both integrated lifetime water leakage and the onset of any aging problems. Finally, the author provides a number of pieces of evidence indicating that aging of the SR793B-80 material will not be significant during the expected lifetime of the W88.

More Details

Image blur

Nissen, Mark R.

The image blur in a photograph is produced by the exposure of a moving object. Knowing the amount of image blur is important for recording useful data. If there is too much blur, it becomes hard to make quantitative measurements. This report discusses image blur, the parameters used to control it, and how to calculate it.

More Details

Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992

Zaeh, R.A.

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

More Details

Operations manual for the Beneficial Uses Shipping System cask. Revision 1

Bronowski, David R.

This document is the Operations Manual for the Beneficial Uses Shipping System (BUSS) cask. These operating instructions address requirements; for loading, shipping, and unloading, supplementing general operational information found in the BUSS Safety Analysis Report for Packaging (SARP), SAND 83-0698. Use of the BUSS cask is authorized by Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) for the shipment of special form cesium chloride or strontium flouride capsules.

More Details

Synthetic aperture radar and interferometry development at Sandia National Laboratories

O'Canna, Myra L.

Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

More Details

Si atomic layer epitaxy based on Si2H6 and remote He plasma bombardment

Thin Solid Films

Picraux, Samuel T.

Atomic layer epitaxy (ALE) of Si has been demonstrated by using remote He plasma low energy ion bombardment to desorb H from an H-passivated Si(100) surface at low temperaturea and subsequently chemisorbing Si2H6 on the surface in a self-limiting fashion. Si substrates were prepared using an RCA clean followed by a dilute HF dip to provide a clean, dihydride-terminated (1 × 1) surface, and were loaded into a remote plasma chemical vapor deposition system in which the substrate is downstream from an r.f. noble gas (He or Ar) glow discharge in order to minimize plasma damage. An in situ remote H plasma clean at 250°C for 45 min was used to remove surface O and C and to provide an alternating monohydride and dihydride termination, as evidenced by a (3 × 1) reflection high energy electron diffraction (RHEED) pattern. It was found necessary to desorb the H from the Si surface to create adsorption sites for Si- bearing species such as Si2H6. Remote He plasma bombardment for 1-3 min was investigated over a range of temperature (250°C-410°C), pressures (50-400 mTorr) and r.f. powers (6-30 W) in order to desorb the H and to convert the (3 × 1) RHEED pattern to a (2 × 1) pattern which is characteristic of either a monohydride termination or a bare Si surface. It was found that as He pressures and r.f. powers are raised the plasma potential and mean free paths are reduced, leading to lower He bombardment energies but higher fluxes. Optimal He bombardment parameters were determined to be 30 W at 100 mTorr process pressure at 400°C for 1-3 min. He was found to be more effective than Ar bombardment because of the closer match of the He and H masses compared with that between Ar and H. Monte Carlo TRIM simulations of He and Ar bombardment of H-terminated Si surfaces were performed 3o validate this hypothesis and to predict that approximately 3 surface H atoms were displaced by the incident He atoms, with no bulk Si atom displacement for He energies in the range 15-60 eV. The He bombardment cycles were followed by Si2H6 dosing over a range of partial pressures (from 10-7 Torr to 1.67 mTorr), temperatures (250°C-400°C) and times (from 20s to 3 min) without plasma excitation, because it is believed that Si2H6 can chemisorb in a self-limiting fashion on a bare Si surface as two silyl (SiH3) species, presumably leading to a H-terminated surface once again. The Si2H6 dosing pressures and times corresponded to saturation dosing (about 106 langmuirs). Alternate Si2H6 dosing and He low energy ion bombardment cycles (about 100-200) were performed to confirm the ALE mode of growth. It was found that the growth per cycle saturates with long Si2H6 dosing at a level which increases slightly with He bombardment time. At 400°C, for 2 min He bombardment at 100 mTorr and 30 W, the growth per cycle saturates at about 0.1 monolayers cycle-1, while for 3 min He bombardment the Si growth saturates at about 0.15 monolayers cycle-1. It was also confirmed that the growth is achieved only by using alternate He bombardment and Si2H6 dosing. He bombardment alone for a comparable time (3 min × 100 cycles) causes a negligible change in the Si film thickness (less than 5 Å). Similarly, thermal growth using Si2H6 under these conditions for (3 min × 100 cycles) causes negligible deposition (less than 5 Å). © 1993.

More Details

Finding a covering triangulation whose maximum angle is provably small

Mitchell, Scott A.

Given a planar straight-line graph, we find a covering triangulation whose maximum angle is as small as possible. A covering triangulation is a triangulation whose vertex set contains the input vertex set and whose edge set contains the input edge set. Such a triangulation differs from the usual Steiner triangulation in that we may not add a Steiner vertex on any input edge. Covering triangulations provide a convenient method for triangulating multiple regions sharing a common boundary, as each region can be triangulated independently. As it is possible that no finite covering triangulation is optimal in terms of its maximum angle, we propose an approximation algorithm. Our algorithm produces a covering triangulation whose maximum angle {gamma} is probably close to {gamma}{sub opt}, a lower bound on the maximum angle in any covering triangulation of the input graph. Note that we must have {gamma} {le} 3{gamma}{sub opt}, since we always have {gamma}{sub opt} {ge} {pi}/3 and no triangulation can contain an angle of size greater than {pi}. We prove something significantly stronger. We show that {pi} {minus} {gamma} {ge} ({pi} {minus} {gamma}{sub opt})/6, i.e., our {gamma} is not much closer to {pi} than is {gamma}{sub opt}. This result represents the first nontrivial bound on a covering triangulation`s maximum angle. We require a subroutine for the following problem: Given a polygon with holes, find a Steiner triangulation whose maximum angle is bounded away from {pi}. No angle larger than 8{pi}/9 is sufficient for the bound on {gamma} claimed above. The number of Steiner vertices added by our algorithm and its running time are highly dependent on the corresponding bounds for the subroutine. Given an n-vertex planar straight-line graph, we require O(n + S(n)) Steiner vertices and O(n log n + T(n)) time, where S(n) is the number of Steiner vertices added by the subroutine and T(n) is its running time for an O(n)-vertex polygon with holes.

More Details

Estimation of partial decoupling of cavity events

Garbin, H.D.

One proven method of evading the detection of a nuclear test is to decouple the explosion with a large air-filled cavity. Past tests have shown it is possible to substantially reduce the seismic energy emanating from a nuclear explosion by as much as two, orders of magnitude. The problem is not whether it can be done; the problem is the expense involved in mining a large cavity to fully decouple any reasonable size test. It has been suggested that partial decoupling may exist so some fraction of decoupling may be attained between factors of 1 to 100. MISTY ECHO and MINERAL QUARRY are two nuclear tests which were instrumented to look at this concept. MISTY ECHO was a nuclear explosion conducted in an 11 m hemispherical cavity such that the walls were over driven and reacted in a non-linear manner. MINERAL QUARRY was a nearby tamped event that is used as a reference to compare with MISTY ECHO. The scaled cavity radius of MISTY ECHO was greater than 2m/kt[sup l/3]. Both of these tests had free-field accelerometers located within 400 m of their respective sources. Analysis of surface ground motion is inconclusive on the question of partial decoupling. This is due to the difference in medium properties that the ray paths take to the surface. The free-field configuration alleviates this concern. The analysis consists of cube-root signal MINERAL QUARRYs signal to MISTY ECHO's yield and calculating the ratio of the Fourier amplitudes of both the acceleration and the reduced displacement potentials. The results do not indicate the presence of partial decoupling. In fact, there is a coupling enhancement factor of 2.

More Details

Selective retrieval of buried waste using mobile robot manipulator systems

Boissiere, P.T.

Hazardous operations which involve the dextrous manipulation of dangerous materials in the field have, in the past, been completed by technicians. Use of humans in such hazardous operations is under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. Remote systems are needed to accomplish many tasks such as the clean up of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. Traditional remote manual field operations have, unfortunately, proven to have very low productivity when compared with unencumbered human operators. Recent advances in the integration of wars and computing into the control of remotely operated equipment have shown great promise for reducing the cost of remote systems while providing faster and safer remote systems. This paper discusses applications of such advances to remote field operations.

More Details

Using environmental tracers to estimate recharge through an arid basin

Conrad, Stephen H.

Multiple tracer techniques were used to estimate recharge rates through unsaturated alluvium beneath the Greater Confinement Disposal site, a waste disposal site located in Frenchman Flat, on the Nevada Test Site. Three tracers of soil water movement -- meteoric chloride, stable isotopes of water, and cosmogenic chlorine-36 -- yielded consistent results indicating that recharge rates were negligible for the purpose of performance assessment at the site.

More Details

Fiber-optic shock position sensor

Weiss, Jonathan D.

This report describes work performed for the development of a fiber-optic shock position sensor used to measure the location of a shock front in the neighborhood of a nuclear explosion. Such a measurement would provide a hydrodynamic determination of nuclear yield. The original proposal was prompted by the Defense Nuclear Agency`s interest in replacing as many electrical sensors as possible with their optical counterparts for the verification of a treaty limiting the yield of a nuclear device used in underground testing. Immunity to electromagnetic pulse is the reason for the agency`s interest; unlike electrical sensors and their associated cabling, fiber-optic systems do not transmit to the outside world noise pulses from the device containing secret information.

More Details

Optimal configuration analysis for the Robotic All-Terrain Lunar Exploration Rover

Purvis, James W.

A robotic rover vehicle designed for use in the exploration of the Lunar surface is described. The Robotic All-Terrain Lunar Exploration Rover (R-A.T.L.E.R-) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while climbing over step-like obstacles as large as {approximately}1.3 wheel diameters. Skid steering and modular construction are used to produce a simple, rugged, highly agile mobility chassis with fewer parts required compared to other designs being considered for planetary exploration missions. The design configuration, mobility parameters, and performance of several existing R.A.T.L.E.R prototypes are discussed, with emphasis on an analysis of the configuration parameters which directly affect the designs mobility performance.

More Details

Potential techniques for non-destructive evaluation of cable materials

Gillen, Kenneth T.

This paper describes the connection between mechanical degradation of common cable materials in radiation and elevated temperature environments and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

More Details

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium?

Kunsman, David M.

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

More Details

Spaceborne SAR study: LDRD `92 final report

Bickel, Douglas L.

This is the final report for a study performed for the 1992 LDRD spaceborne SAR (Synthetic Aperture Radar) study. This report presents an overview of some of the issues that must be considered for design and implementation of a SAR on a spaceborne platform. The issues addressed in this report include: a survey of past, present, and future spaceborne SARs; pulse-repetition frequency (PRF); general image processing issues; transmitter power requirements; the ionosphere; antennas; two case studies; and an appendix with a simplified presentation on geometry and orbits.

More Details

Preliminary evaluation of a high-g shock miniature AT strip resonator

Dvorack, Michael A.

An ever increasing demand for highly rugged, miniature AT strip resonators prompted the development of a resonator package for use in high-g shock applications. This package, designed and developed by Statek Corporation, is based on the package configuration currently being used by Statek for commercial devices. This report describes the design intent, component characteristics, and evaluation test results for this device.

More Details

Diffusion bonding. Temperature and pressure factorial experiment for molybdenum sheet substrates

Brown, L.E.

A temperature between 400 and 500 and a pressure between 40 MPa and 160 MPa were indicated by a two-factor, three-level factorial experiment for diffusion bonding of molybdenum sheet substrates. These substrates were sputter ion plated with palladium (0.5 {mu}m) and silver (10 {mu}m) films on the mating surfaces, with the silver used as a bonding interlayer. The palladium acted as an adhesive layer between the silver film and molybdenum substrate. The silver diffusion bonds that resulted were qualitatively characterized at the interfacial regions, and bonds with no visible interface were obtained at 750OX magnification. Correlations were obtained for voids found optically at the silver/silver bonding interface and colored image maps, illustrating bond quality, produced by nondestructive ultrasonic imaging. Above 160 MPa, the bonding process produces samples with a nonuniform load distribution. These samples contained regions with gaps and well-bonded regions at the silver/silver interface, and all had macroscopic deformation of the silver films.

More Details

Foreign technology assessment: Environmental evaluation of a radiation-hard oscillator/divider

Dvorack, Michael A.

Salford Electrical Instruments, Ltd., and the General Electric Company`s Hirst Research Centre, under contract to the United Kingdom`s (UK) Ministry of Defence, developed a radiation-hard, leadless chip-carrier-packaged oscillator/divider. Two preproduction clocks brought to Sandia National Laboratories (SNL) by a potential SNL customer underwent mechanical and thermal environmental evaluation. Because of the subsequent failure of one device and the deteriorating condition of another device, the devices were not subjected to radiation tests. This report describes the specifics of the environmental evaluation performed on these two clocks and the postmortem analysis of one unit, which ultimately failed. Clock startup time versus temperature studies were also performed and compared to an SNL-designed clock having the same fundamental frequency.

More Details

Flash x-ray system, techniques and applications

Lanoue, J.C.; Berry, R.B.

High speed flash radiography has been used to record phenomena that occur during rapid dynamic events. The events are difficult, if not impossible, to record by other means due to the speed of the event or the obscuration associated with it. To eliminate the motion blur of objects moving at high speeds it is necessary to have extremely short exposure times. This short exposure time requires the use of high speed intensifying screens and high speed x-ray film to record the radiographic image. Technicians who use flash x-rays have to depend on recommendations from present and former flash x-ray users for film and screen selection. The film and screen industry has made many changes in the last few years. It is not uncommon to find that the particular film or screen used in the past is no longer manufactured. This paper will describe some of the films and screens that are currently used for testing. It will also describe the optimum experimental setup used to obtain the best images.

More Details

Treatment of liquid nuclear wastes with advanced forms of titanate ion exchangers

Dosch, R.G.; Borwn, N.E.; Stephens, H.P.; Anthony, R.G.

A new class of inorganic ion exchange materials that can separate low parts per million level concentrations of Cs{sup +} from molar concentrations of Na{sup +} has recently been developed as a result of a collaborative effort between Sandia National Laboratories and Texas A&M University. The materials, called crystalline silicotitanates, show significant potential for application to the treatment of aqueous nuclear waste solutions, especially neutralized defense wastes that contain molar concentrations of Na{sup +} in highly alkaline solutions. In experiments with alkaline solutions that simulate defense waste compositions, the crystalline silicotitanates exhibit distribution coefficients for Cs{sup +} of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 for solutions adjusted to a pH between 1 and 10. Additionally, the crystalline silicotitanates were found to exhibit distribution coefficients for Pu and Sr{sup 2+} of greater than 2,000 and 100,000 respectively. Development of these materials for use in processes to treat defense waste streams is currently being pursued.

More Details

The use of DFT windows in signal-to-noise ratio and harmonic distortion computations

Solomon Jr., O.M.

The discrete Fourier transform (DFT) is used frequently used in the computation of the signal-to-noise ratio (SNR) and harmonic distortion. To estimate the SNR or harmonic distortion, a sine wave is applied to the digitizing system under test. When the data record contains an integer number of cycles of the sine wave, energy from the sine wave and its harmonics does not leak into adjacent DFT frequency bins. Each harmonic occupies one an only one DFT frequency bin. To find the root-mean-square (RMS) value of a harmonic from its DFT, one computes the magnitude of the DFT value at the single frequency of the harmonic. When the DFTs of the fundamental and its harmonics are single lines, the SNR and harmonic distortion are easy to compute. When the data record contains a non-integer number of cycles of the sine wave, energy leaks from the sine wave and its harmonics to adjacent frequencies. The literature contains several approaches to problem of determining which DFT components correspond to a sine wave harmonic. This paper describes how to estimate the RMS value of a sine wave from its DFT with special attention to the selection of the DFT window. The set of DFT frequencies which comprise a harmonic depends on the DFT window, the length of the DFT, and the number of bits of the digitizer. Criteria are developed for choosing the DFT frequencies that correspond to a sine wave. These criteria lead to better choices of DFT windows for SNR and harmonic distortion calculations.

More Details

Intrinsic and interfacial recombination in OMVPE- and MBE-prepared GaAs/Al{sub x}Ga{sub 1-x}As heterostructures

Hjalmarson, Harold P.

We have studied intrinsic free-carrier recombination in a variety of GaAs structures, including: OMVPE- and MBE-prepared GaAs/Al{sub x}Ga{sub 1-x}As double heterostructures, Na{sub 2}S passivated GaAs structures and bare GaAs structures. We find OMVPE prepared structures are superior to all of these other structures with 300 K lifetimes of {approximately} 2.5 {mu}s and negligible nonradiative interface and bulkrecombination, and thus are truly surface-free (S < 40 cm/s). Moreover, we observe systematic trends in optical properties versus growth conditions. Lastly, we find that the presence of free-exciton recombination in the low-temperature photoluminescence spectra is a necessary but not sufficient condition for optimal optical properties (i.e. long minority-carrier lifetimes).

More Details
Results 94601–94650 of 96,771
Results 94601–94650 of 96,771