Multiscale Modeling of Solid State Hydrogen Storage Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry. C
Here, diammonium dodecahydro-closo-dodecaborate (NH4)2B12H12 is the ionic compound combining NH4+ cations and [B12H12]2– anions, both of which can exhibit high reorientational mobility. To study the dynamical properties of this material, we measured the proton NMR spectra and spin–lattice relaxation rates in (NH4)2B12H12 over the temperature range of 6–475 K. Two reorientational processes occurring at different frequency scales have been revealed. In the temperature range of 200–475 K, the proton spin–lattice relaxation data are governed by thermally activated reorientations of the icosahedral [B12H12]2– anions. This motional process is characterized by the activation energy of 486(8) meV, and the corresponding reorientational jump rate reaches ~108 s–1 near 410 K. Below 100 K, the relaxation data are governed by the extremely fast process of NH4+ reorientations which are not “frozen out” at the NMR frequency scale down to 6 K. The experimental results in this range are described in terms of a gradual transition from the regime of low-temperature quantum dynamics (rotational tunneling of NH4 groups) to the regime of classical jump reorientations of NH4 groups with an activation energy of 26.5 meV. Our study offers physical insights into the rich dynamical behavior of (NH4)2B12H12 on an atomic level, providing a link between the microscopic and thermodynamic properties of this compound.
Physical Chemistry Chemical Physics
Recent theoretical predictions indicate that functional groups and additives could have a favorable impact on the hydrogen adsorption characteristics of sorbents; however, no definite evidence has been obtained to date and little is known about the impact of such modifications on the thermodynamics of hydrogen uptake and overall capacity. In this work, we investigate the effect of two types of additives on the cryoadsorption of hydrogen to mesoporous silica. First, Lewis and Brønsted acid sites were evaluated by grafting aluminum to the surface of mesoporous silica (MCF-17) and characterizing the resulting silicate materials' surface area and the concentration of Brønsted and Lewis acid sites created. Heat of adsorption measurements found little influence of surface acidity on the enthalpy of hydrogen cryoadsorption. Secondly, platinum nanoparticles of 1.5 nm and 7.1 nm in diameter were loaded into MCF-17, and characterized by TEM. Hydrogen absorption measurements revealed that the addition of small amounts of metallic platinum nanoparticles increases by up to two-fold the amount of hydrogen adsorbed at liquid nitrogen temperature. Moreover, we found a direct correlation between the size of platinum particles and the amount of hydrogen stored, in favor of smaller particles.
Physical Chemistry Chemical Physics
The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1:0.63 and 1:0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B:H ratio close to 1:1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage.
Chemistry of Materials
The salt compounds NaB11H14, Na-7-CB10H13, Li-7-CB10H13, Na-7,8-C2B9H12, and Na-7,9-C2B9H12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disorder phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~1010 jumps s-1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB9H10- and CB11H12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.
Chemistry of Materials
Li2B12H12, Na2B12H12, and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li- and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li2B12H12 and Na2B12H12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsic frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric symmetry of the anion and the symmetry of the lattice itself, which can facilitate cation hopping. Finally, facile anion reorientations and other low-frequency thermal vibrations lead to fluctuations in the local potential that enhance cation mobility by creating a local driving force for hopping. We discuss the relevance of each factor for developing new ionic conductivity descriptors that can be used for discovery and optimization of closo-borate solid electrolytes, as well as superionic conductors more generally.
Abstract not provided.
Nano Letters
The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.
Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2) metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.
Abstract not provided.
Abstract not provided.
The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Metal-organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer, taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. Continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies. (Figure Presented).
Abstract not provided.
Abstract not provided.
Advanced Materials Interfaces
Internal interfaces in the Li3N/[LiNH2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.
Abstract not provided.
Physical Chemistry Chemical Physics
Mg(BH4)2 is a promising solid-state hydrogen storage material, releasing 14.9 wt% hydrogen upon conversion to MgB2. Although several dehydrogenation pathways have been proposed, the hydrogenation process is less well understood. Here, we present a joint experimental-theoretical study that elucidates the key atomistic mechanisms associated with the initial stages of hydrogen uptake within MgB2. Fourier transform infrared, X-ray absorption, and X-ray emission spectroscopies are integrated with spectroscopic simulations to show that hydrogenation can initially proceed via direct conversion of MgB2 to Mg(BH4)2 complexes. The associated energy landscape is mapped by combining ab initio calculations with barriers extracted from the experimental uptake curves, from which a kinetic model is constructed. The results from the kinetic model suggest that initial hydrogenation takes place via a multi-step process: molecular H2 dissociation, likely at Mg-terminated MgB2 surfaces, is followed by migration of atomic hydrogen to defective boron sites, where the formation of stable B-H bonds ultimately leads to the direct creation of Mg(BH4)2 complexes without persistent BxHy intermediates. Implications for understanding the chemical, structural, and electronic changes upon hydrogenation of MgB2 are discussed.
MRS Advances
Robust time-averaged molecular dynamics has been developed to calculate finiteerature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH0.6 only match well with ultrasonic data at 10 K; whereas, at 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Literature mechanical testing experiments seem to support this hypothesis.