Publications

Results 76–100 of 216

Search results

Jump to search filters

In-situ/operando X-ray characterization of metal hydrides

ChemPhysChem

Liu, Yi-Sheng; Jeong, Sohee; White, James L.; Feng, Xuefei; Cho, Eun S.; Stavila, Vitalie S.; Allendorf, Mark D.; Urban, Jeffrey; Guo, Jinghua

Here in this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions.Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility.A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.

More Details

Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH 4

ACS Applied Materials and Interfaces

White, James L.; Rowberg, Andrew J.E.; Wan, Liwen F.; Kang, Shinyoung; Ogitsu, Tadashi; Kolasinski, Robert K.; Whaley, Josh A.; Baker, Alexander A.; Lee, Jonathan R.I.; Liu, Yi S.; Trotochaud, Lena; Guo, Jinghua; Stavila, Vitalie S.; Prendergast, David; Bluhm, Hendrik; Allendorf, Mark D.; Wood, Brandon C.; El Gabaly Marquez, Farid E.

Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH 4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H 2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.

More Details

Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH4

ACS Applied Materials and Interfaces

White, James L.; Rowberg, Andrew J.E.; Wan, Liwen F.; Kang, Shinyoung; Ogitsu, Tadashi; Kolasinski, Robert K.; Whaley, Josh A.; Baker, Alexander A.; Lee, Jonathan R.I.; Liu, Yi-Sheng; Guo, Jinghua; Stavila, Vitalie S.; Prendergast, David; Bluhm, Hendrik; Allendorf, Mark D.; Wood, Brandon C.; El Gabaly Marquez, Farid E.

Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here in this paper, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment–theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.

More Details

Electrolyte-Assisted Hydrogen Storage Reactions

Journal of Physical Chemistry C

Vajo, John J.; Tan, Hongjin; Ahn, Channing C.; Addison, Dan; Hwang, Son J.; Stavila, Vitalie S.; White, James L.; Wang, Timothy C.; Graetz, Jason

Use of electrolytes, in the form of LiBH4/KBH4 and LiI/KI/CsI eutectics, is shown to significantly improve (by more than a factor of 10) both the dehydrogenation and full rehydrogenation of the MgH2/Sn destabilized hydride system and the hydrogenation of MgB2 to Mg(BH4)2. The improvement revealed that interparticle transport of atoms heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in hydrogen storage materials consisting of multiple phases in powder form. Electrolytes enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction over full surface areas of interacting particles. The examples presented suggest that use of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts may be generally applicable for increasing reaction rates in complex and destabilized hydride materials.

More Details

Nanostructured Metal Hydrides for Hydrogen Storage

Chemical Reviews

Stavila, Vitalie S.; White, James L.; Allendorf, Mark D.

Knowledge and foundational understanding of phenomena associated with the behavior of materials at the nanoscale is one of the key scientific challenges toward a sustainable energy future. Size reduction from bulk to the nanoscale leads to a variety of exciting and anomalous phenomena due to enhanced surface-to-volume ratio, reduced transport length, and tunable nanointerfaces. Nanostructured metal hydrides are an important class of materials with significant potential for energy storage applications. Hydrogen storage in nanoscale metal hydrides has been recognized as a potentially transformative technology, and the field is now growing steadily due to the ability to tune the material properties more independently and drastically compared to those of their bulk counterparts. The numerous advantages of nanostructured metal hydrides compared to bulk include improved reversibility, altered heats of hydrogen absorption/desorption, nanointerfacial reaction pathways with faster rates, and new surface states capable of activating chemical bonds. This review aims to summarize the progress to date in the area of nanostructured metal hydrides and intends to understand and explain the underpinnings of the innovative concepts and strategies developed over the past decade to tune the thermodynamics and kinetics of hydrogen storage reactions. These recent achievements have the potential to propel further the prospects of tuning the hydride properties at nanoscale, with several promising directions and strategies that could lead to the next generation of solid-state materials for hydrogen storage applications.

More Details

Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films before and after Reaction with TCNQ

ACS Applied Materials and Interfaces

Thurmer, Konrad T.; Stavila, Vitalie S.; Friddle, Raymond W.; Leonard, Francois L.; Allendorf, Mark D.; Talin, A.A.; Schneider, Christian; Fischer, Roland A.

HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.

More Details

An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage

Energy and Environmental Science

Allendorf, Mark D.; Hulvey, Zeric; Gennett, Thomas; Ahmed, Alauddin; Autrey, Tom; Camp, Jeffrey; Furukawa, Hiroyasu; Haranczyk, MacIej; Head-Gordon, Martin; Karkamkar, Abhi; Di Liu, Jia; Long, Jeffrey R.; Meihaus, Katie R.; Nayyar, Iffat H.; Nazarov, Roman; Siegel, Donald J.; Stavila, Vitalie S.; Urban, Jeffrey J.; Veccham, Srimukh P.; Wood, Brandon C.

Nanoporous adsorbents are a diverse category of solid-state materials that hold considerable promise for vehicular hydrogen storage. Although impressive storage capacities have been demonstrated for several materials, particularly at cryogenic temperatures, materials meeting all of the targets established by the U.S. Department of Energy have yet to be identified. In this Perspective, we provide an overview of the major known and proposed strategies for hydrogen adsorbents, with the aim of guiding ongoing research as well as future new storage concepts. The discussion of each strategy includes current relevant literature, strengths and weaknesses, and outstanding challenges that preclude implementation. We consider in particular metal-organic frameworks (MOFs), including surface area/volume tailoring, open metal sites, and the binding of multiple H2 molecules to a single metal site. Two related classes of porous framework materials, covalent organic frameworks (COFs) and porous aromatic frameworks (PAFs), are also discussed, as are graphene and graphene oxide and doped porous carbons. We additionally introduce criteria for evaluating the merits of a particular materials design strategy. Computation has become an important tool in the discovery of new storage materials, and a brief introduction to the benefits and limitations of computational predictions of H2 physisorption is therefore presented. Finally, considerations for the synthesis and characterization of hydrogen storage adsorbents are discussed.

More Details

Critical Factors in Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks

Journal of Physical Chemistry C

Stavila, Vitalie S.

Inconsistencies in high-pressure H2 adsorption data and a lack of comparative experiment-theory studies have made the evaluation of both new and existing metal-organic frameworks (MOFs) challenging in the context of hydrogen storage applications. In this work, we performed grand canonical Monte Carlo (GCMC) simulations in nearly 500 experimentally refined MOF structures to examine the variance in simulation results because of the equation of state, H2 potential, and the effect of density functional theory structural optimization. We find that hydrogen capacity at 77 K and 100 bar, as well as hydrogen 100-to-5 bar deliverable capacity, is correlated more strongly with the MOF pore volume than with the MOF surface area (the latter correlation is known as the Chahine's rule). The tested methodologies provide consistent rankings of materials. In addition, four prototypical MOFs (MOF-74, CuBTC, ZIF-8, and MOF-5) with a range of surface areas, pore structures, and surface chemistries, representative of promising adsorbents for hydrogen storage, are evaluated in detail with both GCMC simulations and experimental measurements. Simulations with a three-site classical potential for H2 agree best with our experimental data except in the case of MOF-5, in which H2 adsorption is best replicated with a five-site potential. However, for the purpose of ranking materials, these two choices for H2 potential make little difference. More significantly, 100 bar loading estimates based on more accurate equations of state for the vapor-liquid equilibrium yield the best comparisons with the experiment.

More Details

Assessing the reactivity of TiCl3 and TiF3 with hydrogen

International Journal of Hydrogen Energy

Klebanoff, Leonard E.; Stavila, Vitalie S.

TiCl3 and TiF3 additives are known to facilitate hydrogenation and dehydrogenation in a variety of hydrogen storage materials, yet the associated mechanism remains under debate. Here, experimental and computational studies are reported for the reactivity with hydrogen gas of bulk and ball-milled TiCl3 and TiF3 at the temperatures and pressures for which these additives are observed to accelerate reactions when added to hydrogen storage materials. TiCl3, in either the α or δ polymorphic forms and of varying crystallite size ranging from ∼5 to 95 nm, shows no detectable reaction with prolonged exposure to hydrogen gas at elevated pressures (∼120 bar) and temperatures (up to 200 °C). Similarly, TiF3 with varying crystallite size from ∼4 to 25 nm exhibits no detectable reaction with hydrogen gas. Post-exposure vibrational and electronic structure investigations using Fourier transform infrared spectroscopy and x-ray absorption spectroscopy confirm this analysis. Moreover, there is no significant promotion of H2 dissociation at either interior or exterior surfaces, as demonstrated by H2/D2 exchange studies on pure TiF3. The computed energy landscape confirms that dissociative adsorption of H2 on TiF3 surfaces is thermodynamically inhibited. However, Ti-based additives could potentially promote H2 dissociation at interfaces where structural and compositional varieties are expected, or else by way of subsequent chemical transformations. At interfaces, metallic states could be formed intrinsically or extrinsically, possibly enabling hydrogen-coupled electronic transfer by donating electrons.

More Details

Hybrid Polymer/Metal-Organic Framework Films for Colorimetric Water Sensing over a Wide Concentration Range

ACS Applied Materials and Interfaces

Allendorf, Mark D.; Ullman, Andrew M.; Jones, Christopher G.; Doty, Fred P.; Stavila, Vitalie S.; Talin, A.A.

Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach. HKUST-1 thin films are spin-coated onto rigid or flexible substrates and are shown to quantitatively determine the RH within the range of 0.1-5% RH by either visual observation or a straightforward optical reflectivity measurement. At high humidity (>10% RH), a polymer/MOF bilayer is used to slow the transport of H2O to the MOF film, enabling quantitative determination of RH using time as the distinguishing metric. Finally, the sensor is combined with an inexpensive light-emitting diode light source and Si photodiode detector to demonstrate a quantitative humidity detector for low humidity environments.

More Details

Nature of Decahydro- closo-decaborate Anion Reorientations in an Ordered Alkali-Metal Salt: Rb2B10H10

Journal of Physical Chemistry C

Stavila, Vitalie S.

The ordered monoclinic phase of the alkali-metal decahydro-closo-decaborate salt Rb2B10H10 was found to be stable from about 250 K all the way up to an order-disorder phase transition temperature of ≈762 K. The broad temperature range for this phase allowed for a detailed quasielastic neutron scattering (QENS) and nuclear magnetic resonance (NMR) study of the protypical B10H10 2- anion reorientational dynamics. The QENS and NMR combined results are consistent with an anion reorientational mechanism comprised of two types of rotational jumps expected from the anion geometry and lattice structure, namely, more rapid 90° jumps around the anion C4 symmetry axis (e.g., with correlation frequencies of ≈2.6 × 1010 s-1 at 530 K) combined with order of magnitude slower orthogonal 180° reorientational flips (e.g., ≈3.1 × 109 s-1 at 530 K) resulting in an exchange of the apical H (and apical B) positions. Each latter flip requires a concomitant 45° twist around the C4 symmetry axis to preserve the ordered Rb2B10H10 monoclinic structural symmetry. This result is consistent with previous NMR data for ordered monoclinic Na2B10H10, which also pointed to two types of anion reorientational motions. The QENS-derived reorientational activation energies are 197(2) and 288(3) meV for the C4 fourfold jumps and apical exchanges, respectively, between 400 and 680 K. Below this temperature range, NMR (and QENS) both indicate a shift to significantly larger reorientational barriers, for example, 485(8) meV for the apical exchanges. Finally, subambient diffraction measurements identify a subtle change in the Rb2B10H10 structure from monoclinic to triclinic symmetry as the temperature is decreased from around 250 to 210 K.

More Details

Molecular dynamics studies of fundamental bulk properties of palladium hydrides for hydrogen storage

Journal of Applied Physics

Zhou, Xiaowang Z.; Heo, T.W.; Wood, B.C.; Kang, S.; Stavila, Vitalie S.; Allendorf, Mark D.

Solid-state hydrogen storage materials undergo complex phase transformations whose behavior are collectively determined by thermodynamic (e.g., Gibbs free energy), mechanical (e.g., lattice and elastic constants), and mass transport (e.g., diffusivity) properties. These properties depend on the reaction conditions and evolve continuously during (de)hydrogenation. Thus, they are difficult to measure in experiments. Because of this, past progress to improve solid-state hydrogen storage materials has been prolonged. Using PdHx as a representative example for interstitial metal hydride, we have recently applied molecular dynamics simulations to quantify hydrogen diffusion in the entire reaction space of temperature and composition. Here, we have further applied molecular dynamics simulations to obtain well-converged expressions for lattice constants, Gibbs free energies, and elastic constants of PdHx at various stages of the reaction. Our studies confirm significant dependence of elastic constants on temperature and composition. Specifically, a new dynamic effect of hydrogen diffusion on elastic constants is discovered and discussed.

More Details

Anomalous H2 Desorption Rate of NaAlH4 Confined in Nitrogen-Doped Nanoporous Carbon Frameworks

Chemistry of Materials

Carr, Christopher L.; Jayawardana, Waruni; Zou, Hongyang; White, James L.; El Gabaly Marquez, Farid E.; Conradi, Mark S.; Stavila, Vitalie S.; Allendorf, Mark D.; Majzoub, Eric H.

Confining NaAlH4 in nanoporous carbon scaffolds is known to alter the sorption kinetics and/or pathways of the characteristic bulk hydride reactions through interaction with the framework at the interface, increased specific surface area of the resulting nanoparticles, decreased hydrogen diffusion distances, and prevention of phase segregation. Although the nanosize effects have been well studied, the influence of the carbon scaffold surface chemistry remains unclear. Here we compare the hydrogen sorption characteristics of NaAlH4 confined by melt infiltration in nitrogen-doped/undoped ordered nanoporous carbon of two different geometries. 23Na and 27Al MAS NMR, N2 sorption, and PXRD verify NaAlH4 was successfully confined and remains intact in the carbon nanopores after infiltration. Both the N-doped/undoped nanoconfined systems demonstrate improved reversibility in relation to the bulk hydride during hydrogen desorption/absorption cycling. Isothermal kinetic measurements indicate a lowering of the activation energy for H2 desorption by as much as 70 kJ/mol in N-doped frameworks, far larger than the reduction in carbon-only frameworks. Most interestingly, this dramatic lowering of the activation energy is accompanied by an unexpected and anomalously low NaAlH4 desorption rate in the N-doped frameworks. This suggests that the framework surface chemistry plays an important role in the desorption process and that the rate limiting step for desorption may be associated with interactions of the hydride and host surface. Our results indicate that functionalization of carbon scaffold surface chemistry with heteroatoms provides a powerful method of altering the characteristic hydrogen sorption properties of confined metal hydride systems. This technique may prove beneficial in the path to a viable metal hydride-based hydrogen storage system.

More Details

Temperature- and composition-dependent hydrogen diffusivity in palladium from statistically-averaged molecular dynamics

Scripta Materialia

Zhou, Xiaowang Z.; Stavila, Vitalie S.; Allendorf, Mark D.; Heo, Tae W.; Wood, Brandon C.; Kang, Shinyoung

Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, at high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.

More Details

Phase Evolution of Complex Metal Hydrides During De/Rehydrogenation

White, James L.; Ohigashi, Takuji; Ray, Keith G.; Liu, Yi-Sheng; Stavila, Vitalie S.; Allendorf, Mark D.; Guo, Jinghua

Lightweight complex metal hydrides are of interest for use as energy-dense on-board vehicular hydrogen stores. One material of particular interest, magnesium borohydride (Mg(BH4)2), has very high hydrogen capacity, at 14.9 wt.% H, but suffers from slow kinetics and the need for extreme conditions for both dehydrogenation and rehydrogenation from magnesium diboride (MgB2). In order to establish methods to improve the kinetic properties of this system, a greater understanding of the nucleation and growth of various solid phases is essential.

More Details
Results 76–100 of 216
Results 76–100 of 216