Publications

Results 51–75 of 216

Search results

Jump to search filters

Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal-Organic Framework

ACS Nano

Schneemann, Andreas; Wan, Liwen F.; Lipton, Andrew S.; Liu, Yi S.; Snider, Jonathan S.; Baker, Alexander A.; Sugar, Joshua D.; Spataru, Dan C.; Guo, Jinghua; Autrey, Tom S.; Jorgensen, Mathias; Jensen, Torben R.; Wood, Brandon C.; Allendorf, Mark D.; Stavila, Vitalie S.

The lower limit of metal hydride nanoconfinement is demonstrated through the coordination of a molecular hydride species to binding sites inside the pores of a metal-organic framework (MOF). Magnesium borohydride, which has a high hydrogen capacity, is incorporated into the pores of UiO-67bpy (Zr6O4(OH)4(bpydc)6 with bpydc2- = 2,2′-bipyridine-5,5′-dicarboxylate) by solvent impregnation. The MOF retained its long-range order, and transmission electron microscopy and elemental mapping confirmed the retention of the crystal morphology and revealed a homogeneous distribution of the hydride within the MOF host. Notably, the B-, N-, and Mg-edge XAS data confirm the coordination of Mg(II) to the N atoms of the chelating bipyridine groups. In situ 11B MAS NMR studies helped elucidate the reaction mechanism and revealed that complete hydrogen release from Mg(BH4)2 occurs as low as 200 °C. Sieverts and thermogravimetric measurements indicate an increase in the rate of hydrogen release, with the onset of hydrogen desorption as low as 120 °C, which is approximately 150 °C lower than that of the bulk material. Furthermore, density functional theory calculations support the improved dehydrogenation properties and confirm the drastically lower activation energy for B-H bond dissociation.

More Details

Structural and dynamical properties of potassium dodecahydro-monocarba-closo-dodecaborate: KCB11H12

Journal of Physical Chemistry C

Stavila, Vitalie S.

MCB11H12 (M: Li, Na) dodecahydro-monocarba-closo-dodecaborate salt compounds are known to have stellar superionic Li+ and Na+ conductivities in their high-temperature disordered phases, making them potentially appealing electrolytes in all-solid-state batteries. Nonetheless, it is of keen interest to search for other related materials with similar conductivities while at the same time exhibiting even lower (more device-relevant) disordering temperatures, a key challenge for this class of materials. With this in mind, the unknown structural and dynamical properties of the heavier KCB11H12 congener were investigated in detail by X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and AC impedance measurements. This salt indeed undergoes an entropy-driven, reversible, order-disorder transformation and with a lower onset temperature (348 K upon heating and 340 K upon cooling) in comparison to the lighter LiCB11H12 and NaCB11H12 analogues. The K+ cations in both the low-T ordered monoclinic (P21/c) and high-T disordered cubic (Fm3¯ m) structures occupy octahedral interstices formed by CB11H12- anions. In the low-T structure, the anions orient themselves so as to avoid close proximity between their highly electropositive C-H vertices and the neighboring K+ cations. In the high-T structure, the anions are orientationally disordered, although to best avoid the K+ cations, the anions likely orient themselves so that their C-H axes are aligned in one of eight possible directions along the body diagonals of the cubic unit cell. Across the transition, anion reorientational jump rates change from 6.2 × 106 s-1 in the low-T phase (332 K) to 2.6 × 1010 s-1 in the high-T phase (341 K). In tandem, K+ conductivity increases by about 30-fold across the transition, yielding a high-T phase value of 3.2 × 10-4 S cm-1 at 361 K. However, this is still about 1 to 2 orders of magnitude lower than that observed for LiCB11H12 and NaCB11H12, suggesting that the relatively larger K+ cation is much more sterically hindered than Li+ and Na+ from diffusing through the anion lattice via the network of smaller interstitial sites.

More Details

Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement

Chemistry of Materials

White, James L.; Strange, Nicholas A.; Sugar, Joshua D.; Snider, Jonathan S.; Schneemann, Andreas; Lipton, Andrew S.; Toney, Michael F.; Allendorf, Mark D.; Stavila, Vitalie S.

The thermodynamic stability and melting point of magnesium borohydride were probed under hydrogen pressures up to 1000 bar (100 MPa) and temperatures up to 400 °C. At 400 °C, Mg(BH4)2 was found to be chemically stable between 700 and 1000 bar H2, whereas under 350 bar H2 or lower pressures, the bulk material partially decomposed into MgH2 and MgB12H12. The melting point of solvent-free Mg(BH4)2 was estimated to be 367-375 °C, which was above previously reported values by 40-90 °C. Our results indicated that a high hydrogen backpressure is needed to prevent the decomposition of Mg(BH4)2 before measuring the melting point and that molten Mg(BH4)2 can exist as a stable liquid phase between 367 and 400 °C under hydrogen overpressures of 700 bar or above. The occurrence of a pure molten Mg(BH4)2 phase enabled efficient melt-infiltration of Mg(BH4)2 into the pores of porous templated carbons (CMK-3 and CMK-8) and graphene aerogels. Both transmission electron microscopy and small-angle X-ray scattering confirmed efficient incorporation of the borohydride into the carbon pores. The Mg(BH4)2@carbon samples exhibited comparable hydrogen capacities to bulk Mg(BH4)2 upon desorption up to 390 °C based on the mass of the active component; the onset of hydrogen release was reduced by 15-25 °C compared to the bulk. Importantly, melt-infiltration under hydrogen pressure was shown to be an efficient way to introduce metal borohydrides into the pores of carbon-based materials, helping to prevent particle agglomeration and formation of stable closo-polyborate byproducts.

More Details

Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System

Advanced Materials Interfaces

White, James L.; Baker, Alexander A.; Marcus, Matthew A.; Snider, Jonathan L.; Wang, Timothy C.; Lee, Jonathan R.I.; Allendorf, Mark D.; Stavila, Vitalie S.; El Gabaly Marquez, Farid E.

Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the utility of these materials has been limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. Better understanding of the mixed-phase mesostructures and their interfaces may assist in improving cyclability. In this work, the evolution of the phases during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride are probed with scanning-transmission X-ray microscopy at the nitrogen K edge. With this technique, intriguing core-shell structures were observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2 LiH. The potential contributions of both internal hydrogen mobility and interfacial energies on the generation of these structures are discussed.

More Details

The Inside-Outs of Metal Hydride Dehydrogenation: Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System

Advanced Materials Interfaces

White, James L.; Baker, Alexander A.; Marcus, Matthew A.; Snider, Jonathan S.; Wang, Timothy C.; Lee, Jonathan R.I.; Kilcoyne, David A.L.; Allendorf, Mark D.; Stavila, Vitalie S.; El Gabaly Marquez, Farid E.

Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the practical application of these materials is limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. An improved understanding of the mixed-phase mesostructures and their interfaces will assist in improving cyclability. In this work, the phase evolution during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride is probed with scanning transmission X-ray microscopy at the nitrogen K edge. With this technique, core–shell structures are observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2LiH. To generate these structures, the rate-limiting step must shift from internal hydrogen diffusion during hydrogenation to the formation of hydrogen gas at the surface during desorption.

More Details

A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH4)2 within Reduced Graphene Oxide

ACS Nano

Jeong, Sohee; Heo, Tae W.; Oktawiec, Julia; Shi, Rongpei; Kang, Shinyoung; White, James L.; Schneemann, Andreas; Zaia, Edmond W.; Wan, Liwen F.; Ray, Keith G.; Liu, Yi S.; Stavila, Vitalie S.; Guo, Jinghua; Long, Jeffrey R.; Wood, Brandon C.; Urban, Jeffrey J.

Magnesium borohydride (Mg(BH4)2, abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH - alpha (α), beta (β), and gamma (γ) - have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum. Specifically, we selectively synthesize the thermodynamically stable α phase and metastable β phase from the γ-phase within the temperature range of 150-180 °C. The relevant underlying phase evolution mechanism is elucidated by theoretical thermodynamics and kinetic nucleation modeling. The resulting MBHg composites exhibit structural stability, resistance to oxidation, and partially reversible formation of diverse [BH4]- species during de- and rehydrogenation processes, rendering them intriguing candidates for further optimization toward hydrogen storage applications.

More Details

Understanding Superionic Conductivity in Lithium and Sodium Salts of Weakly Coordinating Closo-Hexahalocarbaborate Anions

Chemistry of Materials

Jorgensen, Mathias; Shea, Patrick T.; Tomich, Anton W.; Varley, Joel B.; Bercx, Marnik; Laros, James H.; Cerny, Radovan; Erny; Zhou, Wei; Udovic, Terrence J.; Lavallo, Vincent; Fortune, Torben R.; Wood, Brandon C.; Stavila, Vitalie S.

Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6]- and [HCB11H5Br6]-, and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 °C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.

More Details

Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning

Journal of Physical Chemistry Letters

Witman, Matthew; Ling, Sanliang; Grant, David M.; Walker, Gavin S.; Agarwal, Sapan A.; Stavila, Vitalie S.; Allendorf, Mark D.

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.

More Details

Relationship between sugarcane culm and leaf biomass composition and saccharification efficiency

Biotechnology for Biofuels

Stavila, Vitalie S.

Background: Lignocellulosic biomass is recognized as a promising renewable feedstock for the production of biofuels. However, current methods for converting biomass into fermentable sugars are considered too expensive and inefficient due to the recalcitrance of the secondary cell wall. Biomass composition can be modified to create varieties that are efficiently broken down to release cell wall sugars. This study focused on identifying the key biomass components influencing plant cell wall recalcitrance that can be targeted for selection in sugarcane, an important and abundant source of biomass. Results: Biomass composition and the amount of glucan converted into glucose after saccharification were measured in leaf and culm tissues from seven sugarcane genotypes varying in fiber composition after no pretreatment and dilute acid, hydrothermal and ionic liquid pretreatments. In extractives-free sugarcane leaf and culm tissue, glucan, xylan, acid-insoluble lignin (AIL) and acid-soluble lignin (ASL) ranged from 20 to 32%, 15% to 21%, 14% to 20% and 2% to 4%, respectively. The ratio of syringyl (S) to guaiacyl (G) content in the lignin ranged from 1.5 to 2.2 in the culm and from 0.65 to 1.1 in the leaf. Hydrothermal and dilute acid pretreatments predominantly reduced xylan content, while the ionic liquid (IL) pretreatment targeted AIL reduction. The amount of glucan converted into glucose after 26 h of pre-saccharification was highest after IL pretreatment (42% in culm and 63.5% in leaf) compared to the other pretreatments. Additionally, glucan conversion in leaf tissues was approximately 1.5-fold of that in culm tissues. Percent glucan conversion varied between genotypes but there was no genotype that was superior to all others across the pretreatment groups. Path analysis revealed that S/G ratio, AIL and xylan had the strongest negative associations with percent glucan conversion, while ASL and glucan content had strong positive influences. Conclusion: To improve saccharification efficiency of lignocellulosic biomass, breeders should focus on reducing S/G ratio, xylan and AIL content and increasing ASL and glucan content. This will be key for the development of sugarcane varieties for bioenergy uses.

More Details

Post-test examination of a Li-Ta heat pipe exposed to H plasma in Magnum PSI

Fusion Engineering and Design

Nygren, Richard E.; Matthews, G.F.; Morgan, T.W.; Silburn, S.A.; Rosenfeld, J.H.; North, M.T.; Tallarigo, A.; Stavila, Vitalie S.

The authors exposed a radiatively cooled, Li-filled tantalum (Ta) heat pipe (HP) to a H plasma in Magnum PSI continuously for ˜2 h. We kept the overall heat load on the inclined HP constant and varied the tilt to give peak heat fluxes of ˜7.5–13 MW/m2. The peak temperature reached ˜1250 °C. This paper describes the post-test analysis and discusses Li HPs with materials other than Ta for fusion. A companion paper describes the experiment.

More Details

An International Laboratory Comparison Study of Volumetric and Gravimetric Hydrogen Adsorption Measurements

ChemPhysChem

Hurst, Katherine E.; Gennett, Thomas; Adams, Jesse; Allendorf, Mark D.; Balderas-Xicohtencatl, Rafael; Bielewski, Marek; Edwards, Bryce; Espinal, L.; Fultz, Brent; Hirscher, Michael; Hudson, M.S.L.; Hulvey, Zeric; Latroche, Michel; Di Liu, Jia; Kapelewski, Matthew; Napolitano, Emilio; Perry, Zachary T.; Purewal, Justin; Stavila, Vitalie S.; Veenstra, Mike; White, James L.; Yuan, Yuping; Zhou, Hong C.; Zlotea, Claudia; Parilla, Philip

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

More Details

An Analytical Bond Order Potential for Mg−H Systems

ChemPhysChem

Zhou, Xiaowang Z.; Stavila, Vitalie S.; Allendorf, Mark D.; Heo, Tae W.; Wood, Brandon C.; Kang, Shinyoung

Magnesium-based materials provide some of the highest capacities for solid-state hydrogen storage. However, efforts to improve their performance rely on a comprehensive understanding of thermodynamic and kinetic limitations at various stages of (de)hydrogenation. Part of the complexity arises from the fact that unlike interstitial metal hydrides that retain the same crystal structures of the underlying metals, MgH 2 and other magnesium-based hydrides typically undergo dehydrogenation reactions that are coupled to a structural phase transformation. As a first step towards enabling molecular dynamics studies of thermodynamics, kinetics, and (de)hydrogenation mechanisms of Mg-based solid-state hydrogen storage materials with changing crystal structures, we have developed an analytical bond order potential for Mg−H systems. We demonstrate that our potential accurately reproduces property trends of a variety of elemental and compound configurations with different coordinations, including small clusters and bulk lattices. More importantly, we show that our potential captures the relevant (de)hydrogenation chemical reactions 2H (gas)→H 2 (gas) and 2H (gas)+Mg (hcp)→MgH 2 (rutile) within molecular dynamics simulations. This verifies that our potential correctly prescribes the lowest Gibbs free energies to the equilibrium H 2 and MgH 2 phases as compared to other configurations. It also indicates that our molecular dynamics methods can directly reveal atomic processes of (de)hydrogenation of the Mg−H systems.

More Details
Results 51–75 of 216
Results 51–75 of 216